输入类似于
[
{"name": "person 1", "age": 20, "type": "student"},
{"name": "person 2", "age": 19, "type": "worker"},
{"name": "person 3", "age": 30, "type": "student"},
{"name": "person 4", "age": 25, "type": "worker"},
{"name": "person 5", "age": 17, "type": "student"}
]
,并且按“类型”字段分组时所需的输出应为
[
[
{"name": "person 1", "age": 20, "type": "student"},
{"name": "person 3", "age": 30, "type": "student"},
{"name": "person 5", "age": 17, "type": "student"}
],
[
{"name": "person 2", "age": 19, "type": "worker"},
{"name": "person 4", "age": 25, "type": "worker"}
]
]
我有以下代码可用于itertools
from itertools import groupby
input = [
{"name": "person 1", "age": 20, "type": "student"},
{"name": "person 2", "age": 19, "type": "worker"},
{"name": "person 3", "age": 30, "type": "student"},
{"name": "person 4", "age": 25, "type": "worker"},
{"name": "person 5", "age": 17, "type": "student"}
]
input.sort(key=lambda x: x["type"])
output = [list(v) for k, v in groupby(input, key=lambda x: x["type"])]
可以正确给出结果。但是对于大量数据,我认为使用熊猫应该更有效,但是现在看来我还不太清楚如何使用熊猫来完成上述任务。我现在拥有的代码有些奏效,但我认为它根本没有效率。
import pandas as pd
input = [
{"name": "person 1", "age": 20, "type": "student"},
{"name": "person 2", "age": 19, "type": "worker"},
{"name": "person 3", "age": 30, "type": "student"},
{"name": "person 4", "age": 25, "type": "worker"},
{"name": "person 5", "age": 17, "type": "student"}
]
indexes = [list(v) for k, v in pd.DataFrame(input).groupby(["type"]).groups.items()]
output = [[input[y] for y in x] for x in indexes]
我很确定上面的代码是使用pandas groupby功能的一种非常错误的方式,那么如何正确地使用它有帮助吗?谢谢。
答案 0 :(得分:2)
您可以使用GroupBy.apply
和to_dict
进行此操作:
pd.DataFrame(input).groupby('type').apply(lambda x: x.to_dict('r')).to_list()
快一点,
pd.DataFrame(input).groupby('type').apply(
pd.DataFrame.to_dict, orient='r').tolist()
# [[{'age': 20, 'name': 'person 1', 'type': 'student'},
# {'age': 30, 'name': 'person 3', 'type': 'student'},
# {'age': 17, 'name': 'person 5', 'type': 'student'}],
# [{'age': 19, 'name': 'person 2', 'type': 'worker'},
# {'age': 25, 'name': 'person 4', 'type': 'worker'}]]
答案 1 :(得分:1)
我会做什么
l1=[[y.iloc[0].to_dict() for z in y.iterrows()] for _ , y in pd.DataFrame(input).groupby('type')]
Out[254]:
[[{'age': 20, 'name': 'person 1', 'type': 'student'},
{'age': 20, 'name': 'person 1', 'type': 'student'},
{'age': 20, 'name': 'person 1', 'type': 'student'}],
[{'age': 19, 'name': 'person 2', 'type': 'worker'},
{'age': 19, 'name': 'person 2', 'type': 'worker'}]]
如果只需要与具有该值的键匹配,则可以使用itertuples
l=[list(y.itertuples()) for _ , y in pd.DataFrame(input).groupby('type')]
Out[256]:
[[Pandas(Index=0, age=20, name='person 1', type='student'),
Pandas(Index=2, age=30, name='person 3', type='student'),
Pandas(Index=4, age=17, name='person 5', type='student')],
[Pandas(Index=1, age=19, name='person 2', type='worker'),
Pandas(Index=3, age=25, name='person 4', type='worker')]]
比较
l[0][0].age
Out[263]: 20
l1[0][0]['age']
Out[264]: 20