AI必须使用Python预测给定增量整数序列中的下一个数字,但到目前为止,我还没有得到预期的结果。我尝试更改学习率和迭代次数,但到目前为止没有任何运气。
应该基于此 PATTERN
预测下一个数字:序列(1)中的第一个数字是一个随机整数,其间隔为[2 ^ 0(当前索引),2 ^ 1(下一个索引),依此类推...
AI应该能够决定从区间中选择哪个数字
我遇到的问题是在AI中实现上述模式,因此它可以预测n + 1,因为我对机器学习还很陌生,我不知道如何向AI提供该模式以及我拥有的库与之合作。
这是我使用的代码:
import numpy as np
# Init sequence
data =\
[
[1, 3, 7, 8, 21, 49, 76, 224, 467, 514, 1155, 2683, 5216, 10544, 51510, 95823,
198669, 357535, 863317, 1811764, 3007503, 5598802, 14428676, 33185509, 54538862,
111949941, 227634408, 400708894, 1033162084, 2102388551, 3093472814, 7137437912, 14133072157,
20112871792, 42387769980, 100251560595, 146971536592, 323724968937, 1003651412950, 1458252205147,
2895374552463, 7409811047825, 15404761757071, 19996463086597, 51408670348612, 119666659114170,
191206974700443, 409118905032525, 611140496167764, 2058769515153876, 4216495639600700, 6763683971478124,
9974455244496710, 30045390491869460, 44218742292676575, 138245758910846492, 199976667976342049,
525070384258266191]
]
X = np.matrix(data)[:, 0]
y = np.matrix(data)[:, 1]
def J(X, y, theta):
theta = np.matrix(theta).T
m = len(y)
predictions = X * theta
sqError = np.power((predictions-y), [2])
return 1/(2*m) * sum(sqError)
dataX = np.matrix(data)[:, 0:1]
X = np.ones((len(dataX), 2))
X[:, 1:] = dataX
# gradient descent function
def gradient(X, y, alpha, theta, iters):
J_history = np.zeros(iters)
m = len(y)
theta = np.matrix(theta).T
for i in range(iters):
h0 = X * theta
delta = (1 / m) * (X.T * h0 - X.T * y)
theta = theta - alpha * delta
J_history[i] = J(X, y, theta.T)
return J_history, theta
print('\n'+40*'=')
# Theta initialization
theta = np.matrix([np.random.random(), np.random.random()])
# Learning rate
alpha = 0.02
# Iterations
iters = 1000000
print('\n== Model summary ==\nLearning rate: {}\nIterations: {}\nInitial
theta: {}\nInitial J: {:.2f}\n'
.format(alpha, iters, theta, J(X, y, theta).item()))
print('Training model... ')
# Train model and find optimal Theta value
J_history, theta_min = gradient(X, y, alpha, theta, iters)
print('Done, Model is trained')
print('\nModelled prediction function is:\ny = {:.2f} * x + {:.2f}'
.format(theta_min[1].item(), theta_min[0].item()))
print('Cost is: {:.2f}'.format(J(X, y, theta_min.T).item()))
# Calculate the predicted profit
def predict(pop):
return [1, pop] * theta_min
# Now
p = len(data)
print('\n'+40*'=')
print('Initial sequence was:\n', *np.array(data)[:, 1])
print('\nNext numbers should be: {:,.1f}'
.format(predict(p).item()))
答案 0 :(得分:0)
我认为没有必要使用AI,线性回归模型足以胜任这项任务。
Input=[('scale',StandardScaler()),('model',LinearRegression())] # Standardizes the data
pipe=Pipeline(Input)
# perform prediction using a linear regression model using the features Z and targets y
pipe.fit(Z,y)
ypipe=pipe.predict(Z)