例如 我有一个清单清单
[[1,2,3], [4,5,6], [7,8,9], [10,11,12], ...]
我想在for循环中添加所有列表并创建一个ndarray,
喜欢跟随
for list in lists:
sum function...
结果就是我想要的
[22, 26, 30]
我如何用漂亮的代码编写它?
答案 0 :(得分:1)
如果您使用的是NumPy,则非常简单:
\p{Lu}
对于纯Python解决方案:
(?=...
NumPy解决方案将更快。
import numpy as np
l = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]
arr = np.array(l)
result = arr.sum(axis=0)
print(result)
# [22 26 30]
答案 1 :(得分:0)
您只需使用python的基本知识就可以做到这一点而无需Numpy。 (所有子列表的长度必须相同)
l = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]
result = [sum(subL[i] for subL in l) for i in range(len(l[0]))]
或者,没有列表理解:
result = []
for i in range(len(l[0])):
n = 0
for x in l:
n += subL[i]
result.append(n)
两者都产生输出[22, 26, 30]
。
如果您对性能感兴趣,我会写这个(不确定它是否正确):
from timeit import timeit
import numpy as np
l = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]
def listComprehension():
result = [sum(subL[i] for subL in l) for i in range(len(l[0]))]
def basic():
result = []
for i in range(len(l[0])):
n = 0
for subL in l:
n += subL[i]
result.append(n)
def zipped():
result = [sum(column) for column in zip(*l)]
def numpyied():
arr = np.array(l)
result = arr.sum(axis=0)
print(timeit("listComprehension()", setup = "from __main__ import listComprehension"))
# 3.738487364
print(timeit("basic()", setup = "from __main__ import basic"))
# 1.953782115
print(timeit("zipped()", setup = "from __main__ import zipped"))
# 1.413262091
print(timeit("numpyied()", setup = "from __main__ import numpyied"))
# 9.576366059999998
令人惊讶的是numpy
慢一些,但我不能说为什么。 (后两个功能取自@Tomothy32's answer)