我正在尝试学习R中的DEoptim
库,但我认为我对
https://www.rdocumentation.org/packages/DEoptim/versions/2.2-4/topics/DEoptim
尝试以下代码时出现错误argument "returns_covar" is missing, with no default
我要优化(最小化)的函数是:
calculate_portfolio_variance <- function(allocations, returns_covar)
{
# Name: calculate_portfolio_variance
# Purpose: Computes expected portfolio variance, to be used as the minimization objective function
# Input: allocations = vector of allocations to be adjusted for optimality; returns_covar = covariance matrix of stock returns
# Output: Expected portfolio variance
portfolio_variance <- allocations%*%returns_covar%*%t(allocations)
return(portfolio_variance)
}
filter_and_sort_symbols <- function(symbols)
{
# Name: filter_and_sort_symbols
# Purpose: Convert to uppercase if not
# and remove any non valid symbols
# Input: symbols = vector of stock tickers
# Output: filtered_symbols = filtered symbols
# convert symbols to uppercase
symbols <- toupper(symbols)
# Validate the symbol names
valid <- regexpr("^[A-Z]{2,4}$", symbols)
# Return only the valid ones
return(sort(symbols[valid == 1]))
}
# Create the list of stock tickers and check that they are valid symbols
tickers <- filter_and_sort_symbols(c("XLE", "XLB", "XLI", "XLY", "XLP", "XLV", "XLK", "XLU", "SHY", "TLT"))
# Set the start and end dates
start_date <- "2013-01-01"
end_date <- "2014-01-01"
# Gather the stock data using quantmod library
getSymbols(Symbols=tickers, from=start_date, to=end_date, auto.assign = TRUE)
# Create a matrix of only the adj. prices
price_matrix <- NULL
for(ticker in tickers){price_matrix <- cbind(price_matrix, get(ticker)[,6])}
# Set the column names for the price matrix
colnames(price_matrix) <- tickers
# Compute log returns
returns_matrix <- apply(price_matrix, 2, function(x) diff(log(x)))
returns_covar <- cov(returns_matrix)
# Specify lower and upper bounds for the allocation percentages
lower <- rep(0, ncol(returns_matrix))
upper <- rep(1, ncol(returns_matrix))
# Calculate the optimum allocation; THIS CAUSES AN ERROR
set.seed(1234)
optim_result <- DEoptim(calculate_portfolio_variance, lower, upper, control = list(NP=100, itermax=300, F=0.8, CR=0.9, allocations, returns_covar))
同样,最后一行的错误是缺少returns_covar
参数,但是我尝试将其传递到DEoptim()
函数中。
我认为以上内容都有括号错误,因此我尝试了以下内容
optim_result <- DEoptim(calculate_portfolio_variance, lower, upper, control = list(NP=100, itermax=300, F=0.8, CR=0.9), returns_covar)
这会导致以下错误:
Error in allocations %*% returns_covar %*% t(allocations) : non-conformable arguments
当我检查矩阵的维数时,一切似乎都很好
> dim(allocations)
[1] 1 10
> dim(returns_covar)
[1] 10 10
在calculate_portfolio_variance()
函数中添加维度检查
print(dim(allocations))
print(dim(returns_covar))
显示分配向量在第二次迭代中变为NULL
。我不确定为什么或如何解决。
[1] 1 10
[1] 10 10
NULL
[1] 10 10
Error in allocations %*% returns_covar %*% t(allocations) : non-conformable arguments
答案 0 :(得分:1)
不清楚这是否是您想要的,但是如果您将calculate_portfolio_variance
更改为
portfolio_variance <- t(allocations)%*%returns_covar%*%allocations
对我有用。我认为这与矩阵数学有关。
编辑的完整可复制示例:
library(quantmod)
library(DEoptim)
calculate_portfolio_variance <- function(allocations, returns_covar)
{
# Name: calculate_portfolio_variance
# Purpose: Computes expected portfolio variance, to be used as the minimization objective function
# Input: allocations = vector of allocations to be adjusted for optimality; returns_covar = covariance matrix of stock returns
# Output: Expected portfolio variance
### I CHANGED THIS LINE
#portfolio_variance <- allocations%*%returns_covar%*%t(allocations)
portfolio_variance <- t(allocations)%*%returns_covar%*%allocations
return(portfolio_variance)
}
filter_and_sort_symbols <- function(symbols)
{
# Name: filter_and_sort_symbols
# Purpose: Convert to uppercase if not
# and remove any non valid symbols
# Input: symbols = vector of stock tickers
# Output: filtered_symbols = filtered symbols
# convert symbols to uppercase
symbols <- toupper(symbols)
# Validate the symbol names
valid <- regexpr("^[A-Z]{2,4}$", symbols)
# Return only the valid ones
return(sort(symbols[valid == 1]))
}
# Create the list of stock tickers and check that they are valid symbols
tickers <- filter_and_sort_symbols(c("XLE", "XLB", "XLI", "XLY", "XLP", "XLV", "XLK", "XLU", "SHY", "TLT"))
# Set the start and end dates
start_date <- "2013-01-01"
end_date <- "2014-01-01"
# Gather the stock data using quantmod library
getSymbols(Symbols=tickers, from=start_date, to=end_date, auto.assign = TRUE)
# Create a matrix of only the adj. prices
price_matrix <- NULL
for(ticker in tickers){price_matrix <- cbind(price_matrix, get(ticker)[,6])}
# Set the column names for the price matrix
colnames(price_matrix) <- tickers
# Compute log returns
returns_matrix <- apply(price_matrix, 2, function(x) diff(log(x)))
returns_covar <- cov(returns_matrix)
# Specify lower and upper bounds for the allocation percentages
lower <- rep(0, ncol(returns_matrix))
upper <- rep(1, ncol(returns_matrix))
# Calculate the optimum allocation
set.seed(1234)
### USING YOUR CORRECTED CALL
optim_result <- DEoptim(calculate_portfolio_variance, lower, upper, control = list(NP=100, itermax=300, F=0.8, CR=0.9), returns_covar)