在igraph
R包中,是否有subcomponent()
和/或BFS的有效实现可以处理多个源顶点?
drake
R package将用户的工作流程建模为相互依赖的对象和文件的DAG。 DAG仅应包含用户的目标及其上游依存关系,因此drake
使用igraph::subcomponent()
来消除多余的顶点。这种方法效率低下,因为v
参数必须是单个顶点,因此drake
最终针对用户要构建的每个目标进行新的BFS。
drake
现在使用different approach that ultimately relies on sequential calls to adjacent_vertices()
。该方法比较笨拙,但是the speed improvement is actually quite nice。仍然追求更优雅和精致的东西。
答案 0 :(得分:2)
我认为您可以使用distances()
函数来执行此操作,该函数生成节点之间的距离矩阵(无边距)。这似乎只搜索一次,并且比遍历每个顶点要快得多。
示例代码:
library(igraph)
library(microbenchmark)
# generate some random testing data
set.seed(1234)
g <- erdos.renyi.game(50, .01)
# Here we make a function that iterates
# across the vector of IDs applying the function
# and returns a list where each element is the
# ids of the subcomponents
sc_apply <- function(g) {
vs <- V(g)
res <- sapply(vs, function(v){as.numeric( # to facilitate comparison
subcomponent(g, v, mode = "in")
)})
res
}
# Try it for testing
t1 <- sc_apply(g)
# Here we get the matrix of node distances. Infinite distance
# implies a seperate component. We iterate through rows of
# matrix to extract the set of nodes that are connected
sc_distmat <- function(g) {
dmat <- distances(g, mode = "in")
res <- apply(dmat, 1, function(row){which(is.finite(row))})
res
}
# extract for testing
t2 <- sc_distmat(g)
# check that equal (we need to sort the
# subcomponent list elements first to facilitate comparison)
all.equal(lapply(t1, sort), t2)
#> [1] TRUE
结果是相同的-尽管值得注意的是,如果您的图形是一个巨大的组件,而不是套用,则会向您返回矩阵而不是列表,因此您需要以稍微不同的方式进行比较。
好,现在让我们看看这是多少/是否更快:
# generate graphs of different sizes (not too big because my
# laptop is borderline antique!)
set.seed(42)
small_g <- erdos.renyi.game(10, .2)
mid_g <- erdos.renyi.game(50, .1)
big_g <- erdos.renyi.game(100, .1)
# check speed improvement
microbenchmark(sc_apply(small_g), sc_distmat(small_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(small_g) 2181.465 2243.4895 2734.7132 2313.005 2777.7135
#> sc_distmat(small_g) 451.333 471.8565 840.4742 521.865 598.0845
#> max neval cld
#> 9152.262 100 b
#> 27139.262 100 a
microbenchmark(sc_apply(mid_g), sc_distmat(mid_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(mid_g) 11006.113 11327.794 13590.9536 12919.492 15397.2510
#> sc_distmat(mid_g) 757.752 795.308 949.2551 841.834 965.4545
#> max neval cld
#> 27068.296 100 b
#> 2061.824 100 a
microbenchmark(sc_apply(big_g), sc_distmat(big_g))
#> Unit: milliseconds
#> expr min lq mean median uq
#> sc_apply(big_g) 23.11678 26.696373 29.940675 29.191045 33.012796
#> sc_distmat(big_g) 1.67531 1.727873 2.156307 1.855994 2.244872
#> max neval cld
#> 47.081647 100 b
#> 7.576123 100 a
您可以看到distances()
方法更快,并且随着图形大小的增长而越来越快。
由reprex package(v0.2.1)于2019-01-10创建