傅立叶变换opencv python FFT和DFT

时间:2018-10-17 03:26:51

标签: python python-3.x opencv opencv3.0 opencv3.1

你好吗?

我一直在尝试进行傅立叶变换和逆傅立叶变换,但是我必须做以下事情。

  1. 删除实部的所有负值,并显示逆变换的结果。

  2. 显示变换图像,突出显示幅度值大于50,000的那些点。

代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('testQ.png',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = rows/2 , cols/2     # center

# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows, cols, 2), np.uint8)
mask[int(crow-30):int(crow+30), int(ccol-30):int(ccol+30)] = 1

# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])

plt.show()    

我试图通过这样做做到第一点

img_back = img_back[img_back>=0]

但我收到此错误:

TypeError: Invalid dimensions for image data

这是图片

this is the image

1 个答案:

答案 0 :(得分:0)

也许您想做的是:

img_back[img_back<0] = 0