你好吗?
我一直在尝试进行傅立叶变换和逆傅立叶变换,但是我必须做以下事情。
删除实部的所有负值,并显示逆变换的结果。
显示变换图像,突出显示幅度值大于50,000的那些点。
代码:
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('testQ.png',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = rows/2 , cols/2 # center
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows, cols, 2), np.uint8)
mask[int(crow-30):int(crow+30), int(ccol-30):int(ccol+30)] = 1
# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
我试图通过这样做做到第一点
img_back = img_back[img_back>=0]
但我收到此错误:
TypeError: Invalid dimensions for image data
这是图片
答案 0 :(得分:0)
也许您想做的是:
img_back[img_back<0] = 0