最小化代表性整数的错误总和

时间:2011-03-02 12:56:40

标签: arrays algorithm optimization combinations

给定[0,10000]之间的n个整数作为D 1 ,D 2 ...,D n ,其中可能存在重复,n可能很大:

我想在[0,10000]之间找到k个不同的代表性整数(例如k = 5)作为R 1 ,R 2 ,...,R k ,因此所有代表性整数的误差总和最小化。

代表性整数的错误定义如下:

假设我们有k个代表整数按升序排列为{R 1 ,R 2 ...,R k },错误R i 是: enter image description here

我希望最小化k个代表整数的错误总和:

enter image description here

如何有效地完成这项工作?

EDIT1: k个代表整数中最小的一个必须是最小的数字 {d <子> 1 ,d <子> 2 ...,d <子>名词}

EDIT2: k代表整数中最大的一个必须是{D 1 中最大的数字,D 2 ......,D n }加1.例如,当{D 1 中的最大数字,D 2 ...,D n }是9787然后R k 是9788。

EDIT3:这里有一个具体的例子:

D = {1,3,3,7,8,14,14,14,30}并且如果k = 5且R被选为{1,6,10,17,31}那么误差总和是:

误差之和=(1-1)+(3-1)* 2 +(7-6)+(8-6)+(14-10)* 3 +(30-17)= 32

这是因为1 <= 1,3,3 <6,6 <= 7,8 <10,10 <= 14,14,14 <17,17 <= 30 <31

8 个答案:

答案 0 :(得分:4)

虽然在社区的帮助下,您已设法陈述您的 在数学上可以理解的形式的问题,你仍然可以 没有提供足够的信息让我(或其他任何人)给予 你一个明确的答案(我会发布这个评论,但是 由于某种原因,我没有看到“添加评论”选项可用 我)。为了对这个问题给出一个好的答案,我们需要知道 n和k相对于彼此的相对大小和10000(或者 D i 的预期最大值(如果不是10000),以及是否 至关重要的是你达到精确最小值(即使这样 需要花费过多的时间进行计算)或者如果a 近似也没关系(如果是这样,你有多接近 需要得到)。另外,为了知道运行什么算法 最短的时间,我们需要了解什么样的 硬件将运行算法(即,我们有CPU 核心并行运行,m相对于k的大小是多少。

另一个重要的信息是这个问题是否存在 只解决了一次,或者它必须多次解决但存在 整数D i 的分布之间的某种联系 从一个问题到下一个问题(例如,整数 D i 都是来自特定的随机样本,不变 概率分布,或者每个连续问题都有 它的输入是一个不断增加的集合,它是前一个集合 问题加上额外的 s 整数)。

没有合理的算法可以及时运行你的问题 由于构建直方图,因此在n中的方式大于线性 n个整数D i 需要O(n)时间,答案为 优化问题本身仅取决于直方图 整数而不是他们的排序。没有算法可以及时运行 小于O(n),因为这是问题输入的大小。

对所有可能性进行蛮力搜索需要(假设 至少有一个D i 是0而另一个是10000),for 小k,比如k&lt; 10,大约是O(10000 k-2 )时间,所以如果 log 10 (n)&gt;&gt; 4(k-2),这是最优算法(因为在 在这种情况下,强力搜索的时间与之相比微不足道 时间阅读输入)。值得注意的是,如果k是 非常接近10000,然后蛮力搜索只需要 O(10000 10002-k )(因为我们可以搜索而不是 用作代表整数的整数。)

如果您使用更多信息更新问题的定义,我 将依次尝试编辑我的答案。

答案 1 :(得分:3)

现在问题澄清了,我们观察到R i 将D x 分成k-1个区间,[R 1 ,R 2 ),[R 2 ,R 3 ),... [R k-1 ,R <子>ķ)。每个D x 恰好属于这些间隔中的一个。令q i 为区间[R i ,R i + 1 )中D x 的数量,并且让s i 是那些D x 的总和。然后每个错误(R i )表达式是q i 项的总和,并且计算为s i - q i - [R <子> I

总结在所有i上,我们得到S - sum的总误差(q i R i ),其中S是所有D X 。所以问题是选择R i 最大化和(q i R i )。请记住,每个q i 是原始数据的数量,至少与R i 一样大,但小于下一个。

任何全局最大值必须是局部最大值;所以我们想象增加或减少一个R i 。如果R i 原始数据值之一,那么我们可以在不改变任何q i 的情况下增加它并改进我们的目标函数。因此,最优解具有每个R i (除了限制最后一个)作为数据值之一。之后我在数学方面陷入了一些困境,但似乎一个明智的方法是选择初始R i 作为每个(n / k)数据值(简单百分位数),然后迭代地查看是否将R_i移动到上一个或下一个值可以改善分数,从而减少错误。 (q i R i 似乎更容易使用,因为你可以读取数据并计算重复次数并更新q i ,R i 只查看单个数据/计数点。无论数据有多大,您只需要存储10,000个数据计数的数组。

data:   1  3  7  8 14 30
count:  1  2  1  1  3  1     sum(data) = 94

initial R: 1  3  8  14  31
initial Q: 1  3  1   4        sum(QR)  = 74 (hence error = 20)

在这个例子中,我们可以尝试将3或8更改为7,例如,如果我们将3增加到7,那么我们看到初始数据中有2个3,所以前两个Q变为1+ 2,3-2 - 事实证明这减少了总和(QR))。我确信有更聪明的模式来检测QR表中的哪些变化是可行的,但这似乎是可行的。

答案 2 :(得分:1)

如果分布接近随机且选择(n)足够大,那么您通常会浪费时间,尝试优化实际成本的时间并计算得比预期平均值减少%。最快的平均解决方案是将低k-1设置在间隔M /(k-1)的低端,其中M是最低上限 - 最大下限(即,M =可能的最大数量 - 0)和M + 1的最后一个k。它将采用顺序k(我们可以用这个问题中提供的信息做得最好)来计算这些值。陈述我刚刚做的事情当然不是证明。

我的观点是这样的。上面的讨论是一个简化,我认为对于一大类集合非常实用。另一方面,可以直接计算所有排列的每个错误,然后选择最小的错误。这种运行时间使得该解决方案在许多情况下难以处理。提出这个问题的人所期望的不仅仅是最直接和最确切(难以处理)的答案,而且还有很多是开放式的。我们可以从边缘修剪到永恒,试图量化沿无限解空间的各种属性,以获得n个数和所有k个值的所有可能的排列(或组合)。

答案 3 :(得分:1)

该程序的完整性部分得到了修改版本的确认,该版本使用here来生成与@mhum独立获得的results匹配的数据。

它找到给定数据集和k值的精确最小误差值和相应的R值。

/************************************************************
This program can be compiled and run (eg, on Linux):
$ gcc -std=c99 minimize-sum-errors.c -o minimize-sum-errors
$ ./minimize-sum-errors
************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//data: Data set of values. Add extra large number at the end

int data[]={
10,40,90,160,250,360,490,640,810,1000,1210,1440,1690,1960,2250,2560,2890,3240,3610,4000,4410,4840,5290,5760,6250,6760,7290,7840,8410,9000,9610,10240,99999,1,2,3,4,5,6,7,8,9,10,24,24,14,12,41,51,21,41,41,848,21,  547,3,2,888,4,1,66,5,4,2,11,742,95,25,365,52,441,874,51,2,145,254,24,245,54,21,87,98,65,32,25,14,25,36,25,14,47,58,58,69,85,74,71,82,82,93,93,93,12,12,45,78,78,985,412,74,3,62,125,458,658,147,432,124,328,952,635,368,634,637,874,124,35,23,65,896,21,41,745,49,2,7,8,4,8,7,2,6,5,6,9,8,9,6,5,9,5,9,5,9,11,41,5,24,98,78,45,54,65,32,21,12,18,38,48,68,78,75,72,95,92,65,55,5,87,412,158,654,219,943,218,952,357,753,159,951,485,862,1,741,22,444,452,487,478,478,495,456,444,141,238,9,445,421,441,444,436,478,51,24,24,24,24,24,24,247,741,98,99,999,111,444,323,33,5,5,5,85,85,85,85,654,456,5,4,566,445,5664,45,4556,45,5,6,5,4,56,66,5,456,5,45,6,68,7653,434,4,6,7,689,78,8,99,8700,344,65,45,8,899,86,65,3,422,3,4,3,4,7,68,544,454,545,65,4,6,878,423,64,97,8778,5456,5486,5485,545,5455,4548,81,999,8233,5223,8741,7747,7756,54,7884,5477,89,332,5999,9861,12545,9852,11452,5482,9358,9845,577,884,5589,5412,3669,32,6699,396,9629,953,321,45,5484,588,5872,85,872,87,1122,884,2458,471,22685,955,2845,6852,589,5896,2521,35696,5236,32633,56665,6633,326,5486,5487,8541,5495,2155,3,8523,65896,3852,5685,69536,1,1,1,1,1,2,3,4,5,6,
};

//N: size of data set

int N=sizeof(data)/sizeof(int);

//SavedBundle: data type to "hold" memoized values needed (minimized error sums and corresponding "list" of R values for a given round) 

typedef struct _SavedBundle {
    long e;
    int head_index_value;
    int tail_offset;
} SavedBundle;

//sb: (pts to) lookup table of all calculated values memoized

SavedBundle *sb;  //holds winning values being memoized

//Sort in increasing order.

int sortfunc (const void *a, const void *b) {
    return (*(int *)a - *(int *)b);
}

/****************************
Most interesting code in here
****************************/

long full_memh(int l, int n) {
    long e;
    long e_min=-1;
    int ti;

    if (sb[l*N+n].e) {
        return sb[l*N+n].e;  //convenience passing
    }
    for (int i=l+1; i<N-1; i++) {
        e=0;
        //sum first part
        for (int j=l+1; j<i; j++) {
            e+=data[j]-data[l];
        }
        //sum second part
        if (n!=1) //general case, recursively
            e+=full_memh(i, n-1);
        else      //base case, iteratively
            for (int j=i+1; j<N-1; j++) {
                e+=data[j]-data[i];
            }
        if (e_min==-1) {
            e_min=e;
            ti=i;
        }
        if (e<e_min) {
            e_min=e;
            ti=i;
        }
    }
    sb[l*N+n].e=e_min;
    sb[l*N+n].head_index_value=ti;
    sb[l*N+n].tail_offset=ti*N+(n-1);
    return e_min;
}

/**************************************************
Call to calculate and print results for the given k
**************************************************/

int full_memoization(int k) {
    char *str;
    long errorsum;  //for convenience
    int idx;

    //Call recursive workhorse
    errorsum=full_memh(0, k-2);
    //Now print
    str=(char *) malloc(k*20+100);
    sprintf (str,"\n%6d %6d {%d,",k,errorsum,data[0]);
    idx=0*N+(k-2);
    for (int i=0; i<k-2; i++) {
        sprintf (str+strlen(str),"%d,",data[sb[idx].head_index_value]);
        idx=sb[idx].tail_offset;
    }
    sprintf (str+strlen(str),"%d}",data[N-1]);
    printf ("%s",str);
    free(str);
    return 0;
}

/******************************************
Initialize and seek result for all k values
******************************************/

int main (int x, char **y) {
    int t;
    int i2;

    qsort(data,N,sizeof(int),sortfunc);
    sb = (SavedBundle *)calloc(sizeof(SavedBundle),N*N);
    printf("\n     Total data size: %d",N);
    printf("\n     k errSUM    R values",N);
    for (int i=3; i<=N; i++) {
        full_memoization(i);
    }
    free(sb);
    return 0;
}

获得了一些样本结果:

 Total data size: 375
 k errSUM    R values
 3 475179 {1,5223,99999}
 4 320853 {1,5223,56665,99999}
 5 260103 {1,5223,7653,56665,99999}
 6 210143 {1,5223,7653,32633,56665,99999}
 7 171503 {1,421,5223,7653,32633,56665,99999}
 8 142865 {1,412,2458,5223,7653,32633,56665,99999}
 9 124403 {1,412,2458,5223,7653,32633,56665,65896,99999}
10 106790 {1,412,2458,5223,7653,9610,32633,56665,65896,99999}
11  93715 {1,412,2458,5223,7653,9610,22685,32633,56665,65896,99999}
12  81507 {1,412,848,2458,5223,7653,9610,22685,32633,56665,65896,99999}
13  71495 {1,412,848,2155,3610,5223,7653,9610,22685,32633,56665,65896,99999}
14  64243 {1,412,848,2155,3610,5223,6633,7747,9610,22685,32633,56665,65896,99999}
15  58355 {1,412,848,2155,3610,5223,6633,7653,8523,9610,22685,32633,56665,65896,99999}
16  53363 {1,65,412,848,2155,3610,5223,6633,7653,8523,9610,22685,32633,56665,65896,99999}
17  48983 {1,65,412,848,2155,3610,4548,5412,6633,7653,8523,9610,22685,32633,56665,65896,99999}
18  45299 {1,65,412,848,2155,3610,4548,5412,6633,7653,8523,9610,11452,22685,32633,56665,65896,99999}
19  41659 {1,65,412,848,2155,3610,4548,5412,6633,7653,8523,9610,11452,22685,32633,56665,65896,69536,99999}
20  38295 {1,65,321,441,848,2155,3610,4548,5412,6633,7653,8523,9610,11452,22685,32633,56665,65896,69536,99999}
21  35232 {1,65,321,441,848,2155,3610,4548,5412,6633,7653,8523,9610,11452,22685,32633,35696,56665,65896,69536,99999}
22  32236 {1,65,321,441,848,2155,3610,4410,5223,5455,6633,7653,8523,9610,11452,22685,32633,35696,56665,65896,69536,99999}
23  29323 {1,65,321,432,634,872,2155,3610,4410,5223,5455,6633,7653,8523,9610,11452,22685,32633,35696,56665,65896,69536,99999}
24  26791 {1,65,321,432,634,862,1690,2458,3610,4410,5223,5455,6633,7653,8523,9610,11452,22685,32633,35696,56665,65896,69536,99999}
25  25123 {1,65,321,432,634,862,1690,2458,3610,4410,5223,5455,5872,6633,7653,8523,9610,11452,22685,32633,35696,56665,65896,69536,99999}
26  23658 {1,65,321,432,634,862,1690,2458,3610,4410,5223,5455,5872,6633,7653,8233,8700,9610,11452,22685,32633,35696,56665,65896,69536,99999}
27  22333 {1,41,78,321,432,634,862,1690,2458,3610,4410,5223,5455,5872,6633,7653,8233,8700,9610,11452,22685,32633,35696,56665,65896,69536,99999}
28  21073 {1,41,78,321,432,634,862,1440,2155,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9610,11452,22685,32633,35696,56665,65896,69536,99999}
29  19973 {1,41,78,321,432,634,848,951,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9610,11452,22685,32633,35696,56665,65896,69536,99999}
30  18879 {1,41,78,321,432,634,848,951,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9358,9845,11452,22685,32633,35696,56665,65896,69536,99999}
31  17786 {1,41,78,321,432,634,848,951,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
32  16801 {1,41,78,321,432,634,848,943,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
33  15821 {1,41,78,218,321,432,634,848,943,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
34  14900 {1,41,78,218,321,421,544,634,848,943,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7653,8233,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
35  14185 {1,41,78,218,321,421,544,634,848,943,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7290,7747,8410,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
36  13503 {1,41,78,218,321,421,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7290,7747,8410,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
37  12859 {1,21,45,78,218,321,421,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5872,6633,7290,7747,8410,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
38  12232 {1,21,45,78,218,321,421,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5664,5872,6633,7290,7747,8410,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
39  11662 {1,21,45,78,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5664,5872,6633,7290,7747,8410,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
40  11127 {1,21,45,78,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
41  10623 {1,21,45,78,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
42  10121 {1,21,41,65,85,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,4410,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
43   9637 {1,21,41,65,85,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,3852,4410,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
44   9207 {1,21,41,65,85,218,321,412,444,544,634,741,862,951,1440,1960,2458,2845,3610,3852,4410,4840,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
45   8804 {1,21,41,65,85,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3610,3852,4410,4840,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
46   8409 {1,21,41,65,85,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,11452,12545,22685,32633,35696,56665,65896,69536,99999}
47   8014 {1,21,41,65,85,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6633,7290,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
48   7636 {1,21,41,65,85,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6250,6633,7290,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
49   7273 {1,21,41,65,85,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
50   6922 {1,21,41,65,85,124,218,321,412,444,544,634,741,862,943,1122,1690,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
51   6584 {1,21,41,65,85,124,218,321,412,444,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4840,5223,5455,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
52   6283 {1,21,41,65,85,124,218,321,412,444,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4840,5223,5412,5477,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
53   5983 {1,21,41,65,85,124,218,321,412,444,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4840,5223,5412,5477,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
54   5707 {1,21,41,65,85,124,218,321,412,444,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
55   5450 {1,21,41,65,85,124,218,321,412,441,478,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
56   5196 {1,21,41,65,85,124,218,321,412,441,478,544,634,741,862,943,1122,1440,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
57   4946 {1,21,41,65,85,124,218,321,412,441,478,544,634,741,862,943,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
58   4722 {1,5,21,41,65,85,124,218,321,412,441,478,544,634,741,862,943,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
59   4536 {1,5,21,41,65,85,124,218,321,412,441,478,544,634,741,862,943,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
60   4352 {1,5,21,41,65,85,124,218,321,412,441,478,544,634,741,848,872,951,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
61   4172 {1,5,21,41,65,85,124,218,321,357,412,441,478,544,634,741,848,872,951,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
62   3995 {1,5,21,41,65,85,124,218,321,357,412,441,478,544,634,741,848,872,951,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8410,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
63   3828 {1,5,21,41,65,85,124,218,321,357,412,441,478,544,634,741,848,872,943,985,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8410,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
64   3680 {1,5,21,41,65,85,124,218,321,357,412,441,478,544,634,741,848,872,943,985,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4000,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8410,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
65   3545 {1,5,21,32,45,65,85,124,218,321,357,412,441,478,544,634,741,848,872,943,985,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4000,4410,4548,4840,5223,5412,5477,5664,5872,6250,6633,6760,7290,7653,7747,7840,8233,8410,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}
66   3418 {1,5,21,32,45,65,85,124,218,321,357,412,441,478,544,634,741,848,872,943,985,1122,1440,1690,1960,2155,2458,2845,3240,3610,3852,4000,4410,4548,4840,5223,5412,5477,5664,5872,5999,6250,6633,6760,7290,7653,7747,7840,8233,8410,8523,8700,9000,9358,9610,9845,10240,11452,12545,22685,32633,35696,56665,65896,69536,99999}

在PC达到100行(可能是375行)之前,PC上的输出开始减慢太多。

答案 4 :(得分:1)

此算法不会产生精确的答案,但它允许处理非常大的数据集的速度比memoized algorithm快得多,并且结果往往非常接近确切的答案。在某些情况下,算法仍然需要改进/调试以防止潜在的无限循环,但这不是一个交易破坏者,因为可以添加代码来阻止它。同时,alg的数据集太大而无法通过其他一些通常更好的算法(如前面提交的memoized alg答案)进行管理。例如,在[1-100000]范围内的近10,000个样本中,在旧PC上以秒为单位计算k = 500,其中出现备忘录版本需要花费一个多小时才能在小得多的情况下进行小得多的k = 90大小为375的数据集。对于这种增加的性能,没有获得绝对最低的误差总和是一个非常小的代价。 [我没有得出结果的质量,但所有比较数据值的地方备忘录可以保持不会超过10%更糟,如果那样。]

/************************************************************
This program can be compiled and run (eg, on Linux):
$ gcc -std=c99 fast-inexact.c -o fast-inexact
$ .fast-inexact
************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

//a: Data set of values. Add extra large number at the end

int a[]={
10,40,90,160,250,360,490,640,810,1000,1210,1440,1690,1960,2250,2560,2890,3240,3610,4000,4410,
4840,5290,5760,6250,6760,7290,7840,8410,9000,9610,10240,99999,
1,2,3,4,5,6,7,8,9,10,
24,24,14,12,41,51,21,41,41,848,21,  547,3,2,888,4,1,66,5,4,2,11,742,
95,25,365,52,441,874,51,2,145,254,24,245,54,21,87,98,65,32,25,14,
25,36,25,14,47,58,58,69,85,74,71,82,82,93,93,93,12,12,45,78,78,985,
412,74,3,62,125,458,658,147,432,124,328,952,635,368,634,637,874,
124,35,23,65,896,21,41,745,49,2,7,8,4,8,7,2,6,5,6,9,8,9,6,5,9,5,9,
5,9,11,41,5,24,98,78,45,54,65,32,21,12,18,38,48,68,78,75,72,95,92,65,
55,5,87,412,158,654,219,943,218,952,357,753,159,951,485,862,1,741,22,
444,452,487,478,478,495,456,444,141,238,9,445,421,441,444,436,478,51,
24,24,24,24,24,24,247,741,98,99,999,111,444,323,33,5,5,5,85,85,85,85,
654,456,5,4,566,445,5664,45,4556,45,5,6,5,4,56,66,5,456,5,45,6,68,7653,
434,4,6,7,689,78,8,99,8700,344,65,45,8,899,86,65,3,422,3,4,3,4,7,68,
544,454,545,65,4,6,878,423,64,97,8778,5456,5486,5485,545,5455,4548,81,
999,8233,5223,8741,7747,7756,54,7884,5477,89,332,5999,9861,12545,9852,
11452,5482,9358,9845,577,884,5589,5412,3669,32,6699,396,9629,953,321,
45,5484,588,5872,85,872,87,1122,884,2458,471,22685,955,2845,6852,589,
5896,2521,35696,5236,32633,56665,6633,326,5486,5487,8541,5495,2155,3,
8523,65896,3852,5685,69536,
1,1,1,1,1,2,3,4,5,6,
  //375

54,5451,545,54,885,855,8621,5,23,7,54,89,3,8545,196,35338,6412,5338,35512,8545,55483,3548,34878,37846,1545,2489,24534,84234,56465,8643,454,8,548,78,454,85,44,54564,87,85,45,48,54,564,67564,8945,864,54564,864,5453,554,7894,65456,45,5489,8424,84248,543,5454,82,54548,44,54654,8454,54,684,54,34,8,454,87,84,4,548,45456,48454,86465,4,454,45,4445,4564,484,4564,64654,56456,54,45,121,2851,15,248,24853,845,8485,384,3484,3484,3853,183,4835,83545,82,1851,6851,854,83,48434,87,34,854,943,849,468,4654,97,35,494,6549,878,65,2184,4845,4564,64,8,44,84,5,4454,4845,484,8513,897,47,8789,764,54,454,54894,454,842,181,54,81348,4518,548,51,813,1851,1841,5484,51,8431,8484,5487,79,4,31,31,84,87,74111,1,7272,7814,18,781,1,7,823,27872,8,8178,4156,485,184,84,45,18,75,18,715,48,78174,6541,8,54,8,41,8,4564,187,154,841,9,4194,53,4194,15,48,941,48,941,5,489,7415,41,49,41,54,54545,494,15,98,4189,5641,841,5145,41,416,48,414,4,841,5414,61,41,9891,61,169,19,1989,173,48154,56116,187,191,61,61418,8719,8187,51842,815,4815,4984,5,484,15,4897,18,4151,81,8941,549,1,5498,15,89,12,4,97,97,1,591,519,1,51,9,15,1655,65,2,3214,2365,8,77899,6565,6589,586,5,66,5,23669,5,9,59,9,8,569,3,3,6,96,99,955,5,96,9595,95,629,8971,81,5715,45,141,4819,84,518,81,87,2,41,5,98,41,54,9415,49,841,54,591,54,918,781,794,1221,2891,5,19878,154,9,4154,94,1518,41,49,415,49,15,4541,954,78,219,45,4515,49,9187,1549,15,985,14984,1597,91978,1541,41,5491,54197,815,914,91,78195,4179,1984,971,54,91,5198,71914,97,194,914,59419,49,4194,941,94191,41,9419,1941,914,9149,4191,1,19149,4949,454,141,1,9,489,415,4941,9841,24,8941,54,5915,198,419,24949,194,8545,4591,5498,714,54,984,5491,54,978,154,978,154,91495,41945,49,41954,8,154,94,149,4594,54,98,154,594,984,815,45,9148,4191,19,84,15,1,948,7897,184,5419,71,4194,8419,41984,954,54,1941,81798,789,459,45,4198,787,184,941,921,987,181,541,48,971,894,9145,594,19,78,48,4984,184,945,4,194,19849,454,978,4154,944,84154,9871,8489,4154,841,8945,198,710,45,4,51,541,984,982,1954,81,491,2465,498,5419,7481,5497,8515,498,4154,979,871,41,148,11971,184,94145,498,15,48,154,9418,41894,815,494,145,419,8,151,25,18940,5415,64348,74851,541,9481,24,9841,2,498,124,91,594,34614,64,8491,456,4164,81,3496,494,324,16498,15,4917,9841,546,4841,546,484,54541,654,81,246,518,4841,65,486,4165,4654,8415,4646,846,41654,864,165,45,4188,165,481,31,354,9415,491,549,484,87131,828,284,842,2,434,8434,64835,4313,143,48,35,498,7,154,8,7897,7154,654,987,564,3546,8789,715,4684,864,234,864,615,467,89,135,4198,7,654,64,189,7817,56,4,654,98,465,46,48,4,354,96,8413,54,8,768,45,165,46,81,654,3,48,7,41,54,6,71654,5618,745,4687,56461,8415,46841,654,18415,4641,684,8641,654,6848,
  //1030 data points where 0 sum was reached around k=700

91971,84841,7108,25538,61927,311,13293,49323,82575,42047,42621,4528,33492,40233,8207,19313,17418,20046,97930,91319,21352,75522,80884,92887,3172,3402,30154,53295,45129,64875,76120,95241,75935,50600,14969,24058,64668,10739,74264,82103,95766,81604,31825,48253,98824,53223,50979,74839,22673,6901,6628,40582,11625,16851,74329,34832,99379,67076,64535,32430,87878,39846,87266,94771,68911,30598,78570,11443,96418,82912,14659,57422,88738,73430,37122,14757,65752,64413,55350,47566,40052,5269,63245,91024,62122,96172,73761,32491,9914,22246,56477,72743,31766,539,8060,51233,94746,38936,82773,4027,49755,75621,27878,36503,63731,96923,93088,71466,7829,91854,96506,5351,9372,792,8237,29526,10003,45061,84050,64869,44551,18686,31130,92931,77843,257,81465,33118,41736,19277,23252,95069,38862,84583,1510,78924,52875,83591,88760,51204,55668,31803,28820,72180,85375,31097,61709,65438,76378,50339,69786,24471,37894,62870,61760,37134,19589,41610,54127,65701,23447,47115,77960,13598,42731,76482,51722,53980,83969,68876,28247,64097,74556,89852,32215,28318,66235,62950,5848,45470,40770,50000,20546,47738,5013,56026,69247,9403,14276,78600,52114,49300,57225,70920,41405,25704,72529,85561,95069,24490,22578,66416,10333,42579,7541,34835,89226,88650,29651,87181,47493,73420,73326,86056,96184,881,3074,34043,12385,62809,32617,30558,47161,95675,18317,95487,1691,30156,70901,86281,29738,59373,94311,11038,62245,98438,48944,35946,67426,98144,37638,39288,90091,2419,74368,5501,53487,4721,45268,92114,77645,92420,55346,24469,10418,80834,72980,57352,54643,47955,28398,59555,4432,64450,94353,18022,7363,88904,18304,75731,28145,77099,37077,51892,77769,78618,58440,76279,93078,66569,40061,11341,95239,42097,34627,455,45190,15006,70919,28975,52242,94947,81103,98508,18289,49883,93925,10329,28593,59948,62807,53107,82485,46257,99603,81315,69200,57179,81100,70139,56208,71697,58216,18287,56682,80797,74856,68581,24932,56111,79553,44985,1078,33601,5052,46698,58454,21591,22216,75724,51901,19814,34312,93688,12404,1472,74226,42104,88751,74560,27770,52677,1257,3921,14543,38065,62154,80166,41952,83753,27875,96367,46870,56989,70061,29349,30417,14600,15638,9381,12672,32427,52193,63465,21644,79884,1788,84165,86538,32588,14481,62895,18922,17814,52043,27770,90651,30220,54177,684,12877,79534,9521,9151,62696,49504,17889,92016,34501,79437,49929,35694,79281,81751,61146,37207,14690,88139,71934,37867,42414,14138,68956,66459,78179,98301,41906,28393,66701,39038,98593,78928,19123,89097,7903,86555,7229,72289,30837,26828,75810,85795,52580,23946,52315,75066,6195,6247,10422,36205,85037,85639,37868,40653,13242,14990,17400,87468,33841,76043,15413,52200,15840,43988,4222,1163,97877,5894,27907,49478,82287,62434,88319,1326,96296,19314,63080,94678,65175,46033,18353,721,50185,87762,48604,70941,57076,15778,83744,24345,72384,93133,60848,51265,34558,58951,16594,45325,19575,41243,4129,36254,47318,68398,85336,10464,81489,49839,17483,40148,36113,1869,68571,90880,26744,26872,80029,40512,50642,85233,39595,61899,73401,33864,32744,45026,35147,62806,66004,75647,32795,25836,22709,46475,18975,89237,63503,37520,62019,72519,66694,78254,11971,26555,38208,51235,82437,73811,30071,60979,42083,59457,17922,53300,69295,14213,79140,14106,93565,39018,98767,12898,19065,99290,55406,96661,81503,17804,17835,45522,36121,15560,90373,29672,82686,95100,85898,30209,39965,18232,96036,83814,67533,31902,91084,43548,81247,34779,24890,45285,10364,29152,94940,1995,28647,63798,74587,51510,61728,52559,95367,41582,56753,92546,45668,73055,76292,80820,71398,87558,10149,25260,95802,56610,94918,65816,83004,32247,89064,94486,43603,91064,9278,44821,43852,46724,55095,8366,4778,36327,75601,71599,3061,64696,56375,58868,1881,13519,7193,3729,55724,98000,686,20422,84697,6823,99729,51581,9345,3230,33531,62041,75483,78380,13008,92322,73680,95761,3407,73779,1497,25348,4410,4715,97954,27151,96981,33027,16691,4754,50716,26714,15603,3877,63828,2177,78364,78663,90410,32799,40001,88635,31521,62240,71126,88550,45596,35836,30578,14734,48055,78423,99670,66613,25034,16271,95578,39832,59491,64164,90110,24612,94666,98316,36945,84526,23957,35914,74261,10148,89869,7362,96525,28747,19389,54348,30954,83866,24346,62858,96355,25336,89159,17438,19877,26213,67260,19395,50133,17429,80909,44168,77546,44149,40791,21306,59121,22933,97532,24283,47625,60143,50324,31150,79093,34412,15694,57816,56400,30645,44351,91535,47481,71120,45186,25358,96844,2731,37108,15691,10876,85188,81006,56378,7416,80928,73845,50342,33962,45379,14001,62637,45,66328,28684,75003,63335,81237,31773,34202,32170,51647,64902,65287,23594,39435,72560,25085,34321,96756,31878,39290,10456,313,58353,87017,45851,46863,88919,38035,94970,67059,21063,13281,91385,94599,5249,34230,96221,35681,18889,64631,49931,51949,23519,37007,59540,76583,70018,97867,98583,94493,13835,55055,56230,57409,48797,81045,97777,38919,4967,75806,36522,29159,64195,58832,51397,5911,47348,72203,31621,61132,32046,47295,81259,92105,61855,46985,8173,15735,16105,14233,36084,27771,77334,39122,50253,25481,17826,63048,64197,80649,172,94257,41669,22848,45634,72586,11604,36415,75842,95214,81968,86722,8491,5522,778,68350,83144,72919,27675,98142,63391,76649,1091,61181,77909,10498,4311,1144,73887,86234,49497,2192,89204,27685,19088,12111,74087,63381,72931,39497,22860,73816,96460,82602,26617,90907,742,77501,54128,6263,58682,81642,54077,13337,55144,73541,30715,98031,19841,26379,51787,48035,81621,81003,63135,71207,857,53082,49846,33006,69020,32600,28809,93781,27697,28789,84895,40154,42393,46255,83968,38531,59098,23078,2388,31081,47343,91678,12450,54226,9212,68542,55477,6778,75148,15625,15970,58963,76847,7532,43793,56065,6579,15151,54887,15814,80796,62039,38595,82848,30052,22450,42599,2606,11555,17245,8693,90166,98322,3856,43958,78906,24069,91181,74155,11157,26701,75147,79735,83698,59368,99053,27406,35721,38162,72535,90580,98451,36614,74207,57638,43118,31493,54616,3525,14593,70458,65804,2371,29952,95822,16967,46585,85324,44495,40046,40188,28571,49601,87926,46314,89084,54871,51785,30464,40750,88002,46775,99857,41941,70369,49355,82416,67822,88126,72305,68090,42573,6664,50620,8171,54154,64323,71018,70255,49214,19102,13961,38126,13767,75255,89885,24285,6784,45907,76710,69512,96761,36343,9178,43610,26232,20416,35417,79808,48812,1442,12738,14060,27780,73339,72251,22224,984,99484,3129,95242,5406,45172,93152,17698,79263,91020,2372,96955,93000,16632,24974,80075,22770,78679,52026,87169,97389,60924,95753,22470,73104,14341,89258,27802,15165,44009,16116,65558,26768,84349,42048,38158,69626,54520,6232,89607,70649,89678,64649,61427,73712,23429,60767,97914,19092,55872,67273,72611,17408,58426,45902,1158,3151,12460,6843,12175,39110,13795,48488,598,88102,62734,30051,85108,83685,4614,16221,89546,22251,33607,22389,28056,97714,97847,69668,14514,25876,47436,98820,80096,38333,73919,10210,53350,38424,71994,95426,16011,63218,46060,88059,54803,17782,4764,89636,75816,20450,71524,51424,66346,38996,51636,65503,35668,16180,35424,16688,71067,19510,20900,81505,44392,88822,66810,54956,22721,4020,55164,7768,53816,29369,97493,22693,50851,53883,40911,91519,8328,3488,89357,265,68837,37347,68925,53993,39617,21956,81340,90625,17603,82990,55479,96397,54300,90079,19013,58286,80248,93752,48825,87804,38548,82925,79145,68161,26215,27595,28166,84134,53883,72828,14699,57729,9756,21219,71888,58735,27888,77657,9862,29308,5713,10369,5132,16637,36379,74924,73424,7622,67815,44654,61976,37575,67544,41394,765,60364,48627,28929,35016,65876,16879,35727,58510,44848,68747,63314,45271,38285,19974,31022,46601,79594,28293,41943,93783,73472,25540,42352,12406,76008,60580,97316,35941,23328,63611,42353,32625,86073,50162,36848,48968,26200,44694,79594,18595,96664,3781,66827,18775,76745,23087,49444,9680,44804,1139,95993,35979,73285,78351,51555,55892,72987,919,6576,58724,74645,55748,15929,5263,9385,31276,81207,26297,13715,36839,23698,80161,78030,22099,23672,18946,52224,63113,52239,62193,69534,6218,9437,72951,26121,99384,89559,22585,41905,50820,17497,62181,95609,11040,48450,4672,19090,74922,25774,27276,59533,82413,90879,54002,1927,80107,48775,3426,13476,8,56421,57833,11826,84730,13248,44960,22347,77712,38664,51496,10446,26342,92613,2537,50518,15298,50077,95138,59074,38391,25995,51757,68041,45079,73503,44795,73578,73714,86823,85676,86652,24529,65036,8034,84053,27255,51289,41191,54733,32906,43556,99492,36724,54294,58745,21879,39742,9760,84910,89882,22040,74779,87799,6733,85094,51541,2561,42018,50703,77647,48273,51943,25317,76893,43156,11204,23775,31223,90188,61128,28268,90392,44615,8268,29091,49155,85684,99848,45164,39604,29565,7404,45835,49245,63540,86092,99420,29373,37648,26577,49013,58660,15547,88827,60902,28092,21057,57412,65051,95942,67104,62021,81178,64070,25825,74358,939,257,2738,85713,59958,34270,45916,48325,86031,68099,13435,96,26509,74600,67943,48462,59415,62719,63542,46788,33966,56201,74797,49645,34663,70653,13993,75123,64971,56299,24290,55613,17019,16469,10228,41530,65684,20980,5657,34485,74200,65094,45106,82980,23313,89679,78589,76463,44692,92419,28224,67769,79223,10358,12046,64508,5664,84873,98898,65128,22810,40006,78824,85890,28783,24195,88541,17804,77888,98005,3163,40585,37812,83540,65091,2368,10153,10123,67755,4906,26772,91241,61110,81443,96255,55859,82616,50686,39787,2824,67188,75051,72755,88297,70263,10886,52465,90967,67740,38048,41855,57897,36010,98311,39800,34970,61919,53605,35960,34556,75179,62847,99582,53397,64903,97681,21363,89165,18184,63832,93788,41877,73907,40862,72219,55696,34322,70520,86524,58044,96077,51867,68264,68773,42545,23291,87772,43135,35583,34601,78101,33345,33146,17877,55345,47317,93056,55095,65630,83641,32938,20800,94894,86836,18949,33463,96351,90210,15136,93306,57484,4970,44591,98902,99319,64390,71429,9453,10288,25967,27543,35135,10277,22490,95493,40130,69518,34173,68057,99926,85945,64916,85557,25386,77470,46018,32982,8214,45880,16878,64891,93415,13796,54925,65390,91184,73091,97527,20617,56281,20972,61849,6063,22834,23121,50132,23168,65229,36501,7732,61662,97901,80938,5449,4324,17177,98702,90374,47638,78220,8025,631,14868,7109,99196,81197,61445,13447,88088,61439,81253,11602,79082,91878,78818,23302,98516,17627,35548,90154,93396,36910,78363,42642,78977,42405,77288,36169,14039,62197,8267,34957,14627,80164,49675,44941,46282,38844,80471,92596,57433,129,85146,35443,63604,8925,2513,16232,75329,65547,12865,65564,40061,37036,2476,18330,67599,77393,27915,21717,39812,67331,39831,91457,82078,86552,84524,33187,78388,93499,31834,51610,48374,9599,62442,58001,79427,25427,10503,79516,447,67385,67312,58505,44860,57318,34878,5784,24556,75323,42995,80230,66273,70899,98707,35982,28881,77311,13652,56025,39197,99183,60848,78778,12611,55865,32717,30740,98863,41178,61939,7501,15980,32740,35422,11145,47642,95924,26318,2168,1409,43150,76210,83168,74739,80236,49366,56557,97408,79222,60346,18130,37973,34753,29330,6319,90128,81966,20999,93645,6116,58983,64143,64283,28777,72347,88576,31292,32646,60348,32715,27780,57558,71558,62441,13266,17590,44902,70808,47002,35206,76340,61551,21960,23786,90629,38566,37365,31258,7344,89896,68418,32815,88560,1462,20635,98402,15486,87818,87832,36665,62422,19706,36102,59077,73157,88408,62456,94333,70225,5552,24127,22076,11571,53084,13717,63016,69793,18229,59206,5782,57379,89482,91636,32108,36221,34750,75596,45483,42593,34406,5029,18772,57724,84624,39233,86922,77772,79550,46276,51367,81047,3458,57390,26930,10328,59690,9573,24463,84201,38847,23755,11125,21505,48379,61368,21367,57139,84731,655,79392,8614,574,39349,68808,91270,98549,33131,12817,91148,95310,90468,67711,69769,23201,54384,94404,70804,1585,8258,46100,64826,22817,47627,40503,7975,62228,2710,71282,16290,73345,9938,11950,57669,2767,47660,95717,4262,87231,23613,3132,5303,35138,15020,78273,55237,44423,43500,60718,8549,35593,34035,87978,94337,43352,66386,24438,4444,99250,15905,7122,12769,9057,38677,31656,91946,36395,6718,17485,60118,28635,16146,62946,37135,31640,81708,28255,76004,97645,67914,42872,64750,74295,54037,32473,77988,34434,87058,97884,71812,99386,59090,54572,94425,88778,26076,81966,74456,58589,75413,95109,35565,47090,62943,21610,15980,51616,83195,68938,77421,95579,43972,33475,80601,75068,71451,46172,53235,10594,229,14538,15779,3535,18792,74958,52376,39650,78112,30435,94447,23664,53290,14297,36564,57415,42577,62973,60178,54379,23471,86489,62865,63912,73881,27530,83805,88588,50955,79897,13092,25428,21032,55713,59695,44564,91593,38587,88118,40408,3458,52854,31271,82336,65550,75963,6379,94470,95815,57597,93874,49015,2623,78929,3542,96688,85728,93123,63370,93923,76560,81218,49577,40321,83277,75622,40868,20647,46612,53977,72510,27750,35045,37285,27490,11203,31005,67918,16305,66145,40471,68625,23301,84038,20189,36517,98936,39855,69536,39650,69495,4564,22889,54425,52056,70852,2908,50233,74545,75399,24963,43468,48828,24219,51897,9941,2651,36619,17298,43353,88712,82010,31618,63076,36919,84544,79994,83762,88616,25184,25358,90200,24379,1593,4588,99452,57834,24314,49316,55537,35259,88574,38989,461,34754,4295,90437,72079,88103,58951,94197,6143,66948,69639,73061,73794,18524,36274,36020,97571,22422,94371,55337,70290,23719,53295,26714,29618,44899,26361,6649,77299,54330,43848,2630,5462,43877,47405,17621,71980,48556,69593,10270,46270,96883,82522,97178,9692,38037,86735,12843,18547,90318,86142,36102,54725,67779,33960,70407,88337,68586,7416,32155,69809,76500,70306,61447,80616,15737,87763,27999,73308,44107,53341,12657,44004,61361,90129,11435,7085,83481,28657,86953,13639,35151,52055,98933,42279,8555,15128,98397,55654,21379,32574,97085,84159,36599,94225,9609,46510,85077,48658,2029,91337,35690,89749,37788,70610,10988,40687,76143,75614,96737,58393,53231,6038,72579,98172,68388,22202,75978,76105,62423,49984,89596,86908,52089,45258,42748,81535,12974,16453,27924,36973,55034,86639,71309,45107,17565,24195,39749,79635,82267,38262,24281,66895,22641,63707,26083,77311,11325,69871,66911,58230,47237,86189,86797,39368,87093,27872,48833,92246,72298,38752,73197,52211,18861,26297,48056,20065,65745,77341,96440,93208,79154,17581,91398,79828,59172,11980,31520,93006,90766,66947,25505,25662,51023,65611,68719,63162,26980,62111,33503,1486,79944,60541,97670,31407,32663,2175,36753,80740,98049,11417,70007,45707,20439,23306,81475,18876,79912,99032,38020,70540,25705,47679,54785,65712,60704,17881,63622,70029,11128,12249,58989,86318,73313,81666,73660,35613,13506,18101,38049,72504,24305,72834,59070,86071,40740,89168,78606,20938,68498,4058,52276,17717,47543,69021,7429,70137,18260,99292,15612,36939,26462,98679,74311,89545,57406,22151,89872,75116,77927,708,45972,38956,82904,59329,66204,82768,20511,72448,62524,87094,72666,36882,35918,2861,47804,24993,4741,22743,21102,23629,94258,42562,64222,95958,20392,86930,90823,49038,70593,4626,44967,17031,30479,24644,445,39185,42883,78137,45683,17756,54827,56304,89580,68790,85188,79520,52051,50933,47318,99246,22670,38591,17499,28045,35897,10805,97972,59912,69796,47591,87583,71044,9546,60276,47273,54530,64316,78565,55598,85509,68537,15822,53298,6913,78820,34806,23461,284,67945,80858,85813,9375,38770,83815,85870,58022,85829,52337,86324,79505,83821,11453,90476,36126,3399,87985,3568,71839,500,4500,88954,76271,29306,7336,56562,80863,6939,11635,25426,90038,43766,11098,1442,14002,76769,11714,51146,37615,88888,44783,94305,70233,19140,88140,54117,69619,93691,63860,64113,38961,85274,83126,16814,59257,35115,47597,69520,86248,82673,58660,20880,41290,12433,47215,34085,89592,19558,40045,76312,14199,74436,86458,70215,91487,71433,842,52231,56386,50702,87931,25493,45389,77371,50364,58718,16481,47618,59975,34313,10748,46240,47191,67951,40516,61168,65880,38343,23913,43060,82008,62035,75518,40273,83224,93027,21877,77435,88307,71632,1290,632,50128,9736,88768,37080,45712,4640,24781,93644,30882,33452,46119,42674,37702,89906,3306,6481,4953,12024,59540,87372,48001,2808,86196,55303,4471,18788,16408,59537,96648,92719,33499,6722,48955,33862,37879,13396,51670,43929,3939,48079,7524,30503,53480,5113,51939,94524,21433,17288,99724,16560,84499,11638,87050,60679,30010,88386,23716,28451,49719,22809,4109,25706,42582,55513,37422,47324,48847,53170,43576,84234,70617,40713,83624,15968,10641,63638,32104,65516,91641,5415,11173,5659,26470,28816,5998,33061,37595,42178,89808,43363,5269,23750,61805,51709,85293,88466,97116,4958,53628,55383,7265,38854,41885,40104,76385,44247,11543,30538,2550,62201,6462,67803,58608,73861,24575,92339,66125,11831,69331,66295,92341,93284,77231,44467,36331,47688,61093,39930,11186,17004,50702,88419,87123,4120,75947,73915,56934,53118,9829,22476,31866,85915,78365,50359,87479,80483,43982,24880,11468,69964,23984,20071,95228,63841,65270,25149,25133,58416,90652,74823,57118,96185,80077,2593,71310,39144,50045,38367,99790,79818,24103,43742,15546,60521,37955,28865,40358,85080,82134,23407,26816,91597,55285,34872,40824,81081,96452,96514,19764,63241,8287,7009,94878,93697,19786,50498,812,16033,1477,5958,72682,24719,2862,24640,75466,72096,62615,59825,51657,88987,31905,7150,1124,89274,93786,93492,12603,77640,93879,50029,38429,46416,14540,60096,99854,53701,21337,14776,23149,88425,87612,14118,73275,95677,39736,3861,38363,43532,86976,15608,57283,51214,31728,86864,3893,27587,60312,59186,75516,88981,54955,51563,28305,65703,39850,31114,26250,3584,46705,77618,3806,65896,68972,86255,44699,33004,84586,3957,78670,42706,9693,82971,71501,40885,48798,242,43439,36694,26933,51184,3285,42256,95213,33537,49816,36308,90626,951,40183,83542,11529,28352,57885,13323,48035,12880,7877,91954,93393,52484,52896,23149,50824,21749,49257,22391,26697,86114,57421,78006,81506,93889,24402,6114,92508,14331,62855,31552,80177,74401,2284,59442,18156,14048,16802,43234,64081,10157,79349,27857,18695,43181,37814,81532,19176,12963,37409,62303,51145,82240,82460,24582,65136,51998,26422,3929,13113,49884,43757,5622,55423,97518,40118,86731,92631,27205,90926,96293,52068,23709,65996,26947,96154,90337,7128,61897,4087,1991,23993,72488,86899,79374,11324,65148,88418,54336,12508,45647,16415,24710,13391,49148,95397,52338,72425,10023,68818,69355,49133,6885,23866,96638,15108,4489,91949,27222,5337,23033,81313,53666,77066,51356,802,88481,73212,23401,9683,58821,34532,78650,75983,37081,45008,45518,28358,73269,62559,78852,33061,22244,40088,55471,93262,69180,69656,21966,99573,56305,78275,32777,50891,53474,49154,20607,2148,90109,39213,57031,23313,61937,36049,86539,44626,86424,72189,79772,35617,2010,10973,83124,61716,63266,76741,70735,42465,12545,50465,55141,56235,27373,11852,54391,62949,35903,11676,42076,94570,98170,21346,17823,34684,94320,5241,17876,22221,86826,60898,6228,79471,82826,96582,25270,22077,78881,45064,40919,62442,72087,63729,34985,31142,15176,70720,52435,18755,39650,40171,90443,81261,36559,81823,67630,78532,56197,16870,77809,5654,18834,96386,3089,20120,95531,2744,78053,81987,16283,43645,86248,80595,11559,18234,59452,81379,53882,15148,5439,15665,98296,52359,40524,34081,
  //+8000 rand ...   cut to about 3000 to fit stackoverflow posting limits
};

//numofa: size of data set

int numofa=sizeof(a)/sizeof(int);

//Sort in increasing order. Used by slow algo to be not nearly as slow.

int sortfunc (const void *a, const void *b) {
    return (*(int *)a - *(int *)b);
}

// Given 3 adjacent k values. Re-calculates the middle k value where (changing only this middle k value) the sum of the error on its left and error on its right is minimized (ie, ke[left] and ke[middle] are minimized).

int minimize_error_3(int *k, int *kai, int64_t *ke, const int left, const int middle, const int right) {
    int64_t minerr=-1;
    int64_t tmperr;
    int64_t l_e=0, e=0;  //not necessary to save errors by parts in general but
    long minidx=kai[left]+1;
//printf ("%d %d %d %d ",k[middle], left, middle, right);
    for (int i=kai[left]; i<kai[right]; i++) {
        tmperr=0;
        for (int j=kai[left]+1; j<i; j++) {   //int j=kai[left]
            tmperr+=a[j]-a[kai[left]];
        }
        e=tmperr;
        for (int j=i+1; j<kai[right]; j++) {
            tmperr+=a[j]-a[i];
        }
        if (minerr==-1)
            minerr=tmperr;
        if (tmperr<minerr) {
            minerr=tmperr;
            minidx=i;
            l_e=e;
        }
    }
    ke[left]=l_e;
    ke[middle]=minerr>-1?minerr-l_e:0;
    kai[middle]=minidx;
    k[middle]=a[minidx];
//printf ("%d %d %d.%d   ",ke[left], ke[middle], k[middle], minidx);
    return 0;
}

int evenstartitercycles (int numofk) {
    char *str, *str2;
    int i, idx, err;
    int done, moved;
    int *k, *kai, *k_old;
    int64_t *ke;

    qsort(a,numofa,sizeof(int),sortfunc);
    k=(int *) calloc(numofk,sizeof(int));
    kai=(int *) malloc(numofk*sizeof(int));
    k_old=(int *) malloc(numofk*sizeof(int));
    ke=(int64_t *) calloc(numofk,sizeof(int64_t));
    k[0]=a[0];
    kai[0]=0;
    k_old[0]=k[0];
    for (int i=1; i<numofk-1; i++) {
        k[i]=a[(numofa*i)/(numofk-1)];
        kai[i]=(numofa*i)/(numofk-1);
        k_old[i]=k[i];
    }
    k[numofk-1]=a[numofa-1];
    kai[numofk-1]=numofa-1;
    k_old[numofk-1]=k[numofk-1];
    ke[numofk-1]=0;    //already 0
    i=0;
    moved=1;
int at_end=0;
int min_x=k[2]-k[1];    //1 doing infin loop  0 ok but violates rule
int min_xi=1;    //1 doing infin loop  0 ok but violates rule
int max_e=-1;
int max_ei=0;

    while (!at_end || moved) {
        if (i==0) {
            moved=0;
            at_end=0;
            min_x=k[2]-k[1];  //?
            min_xi=1;
            max_e=-1;  //?
            max_ei=0;
        }
        minimize_error_3(k, kai, ke, i, i+1, i+2);
        if (i>0) {
            if (k[i+1]-k[i]<min_x) {
                min_x=k[i+1]-k[i];
                min_xi=i;
            }
            if (ke[i]>max_e && i>min_xi+1) {
                max_e=ke[i];
                max_ei=i;
            }
            //later do going to left version
        }
        if (k[i+1]!=k_old[i+1]) {
            moved=1;
            k_old[i+1]=k[i+1];
        }
        if (i<numofk-3) {
            i++;
        } else {
            if (ke[i+1]>max_e && i+1>min_xi) {
                max_e=ke[i+1];
                max_ei=i+1;
            }
            //here see if can gain from shifting around some
            if (max_ei>min_xi+3 && .1*ke[min_xi]*(k[min_xi]-k[min_xi-1])<max_e) {       //fix the +3 to make it unnec???  .3??
//printf("1:%d %d %d %d    ",min_x,min_xi,max_e,max_ei);
                moved=1;
                for (int i=min_xi; i<max_ei; i++) {
                    k[i]=a[kai[i+1]];
                    kai[i]=kai[i+1];
                }
                k[max_ei]=a[++kai[max_ei]];
            }
            i=0;
            at_end=1;
        }
    }
    err=0;
    for (int i=0; i<numofk; i++)
        err+=ke[i];
    str=(char *) calloc(numofk,20);
    for (int i=0; i<numofk; i++)
        sprintf (str+strlen(str),"%d,",k[i]);
    str2=(char *) calloc(numofk,20);
    for (int i=0; i<numofk; i++)
        sprintf (str2+strlen(str2),"%d,",(int)ke[i]);
    printf ("\nevenstartitercycles(%d): The mininum error was %d, found at, k={%s} with error parts={%s} ",numofk,err,str,str2);
    free(str);
    free(str2);
    return 0;
}

int main (int x, char **y) {
    int t; //to track unique num of data if want this feature
    int kmax;

    qsort(a,numofa,sizeof(int),sortfunc);
    t=1;
    for (int i=1; i<numofa; i++)
        if (a[i]!=a[i-1]) {
            t++;
        }
    kmax=t; //t is value where we can reach 0 err sum for first time
    kmax=numofa; //this will give many cases of 0 sum error for data sets that have many repeated data points.
    for (int i=3; i<=kmax; i++) {
        evenstartitercycles(i);
    }
    return 0;
}

答案 5 :(得分:0)

类似于一维k-medians clustering

我之前建议的DP不起作用;我认为我们需要一个从(n',k',i)到D 1 ≤...≤D n'的最优解的表,其中k'代表最棒的是我。考虑到D的界限,运行时间大约为n 2 k且具有非常大的常数,因此您应该调整人们用于 k -means。

答案 6 :(得分:0)

您可能希望使用特定的距离函数来查看Ward's method

答案 7 :(得分:0)