我正在使用group by来获取汇总值。 我的数据集:
df=pd.DataFrame({"A":['a','a','a','a','a','a','b','b','b','b'],
"Sales":[2,3,7,1,4,3,5,6,9,10],
"Units":[12,2,2,33,6,2,4,8,3,5],
"Week":[1,2,2,1,2,1,1,2,2,1]})
在此之后,我正在应用这个功能:
def my_agg(x):
names = {
'Sales': x['Sales'].sum(),
'Units': x['Sales'].sum()
}
return pd.Series(names, index=['Sales','Units'])
dfA= df.groupby(['A','Week']).apply(my_agg)
给我输出:
Sales Units
A Week
a 1 6 6
2 14 14
b 1 15 15
2 15 15
我想将一周转换成列。像这样: 需要的输出:
Week 1 2
A Sales Units Sales Units
a 6 6 14 14
b 15 15 15 15
另外,请为OUTPUT 2建议:
Sales Units
A Week 1 2
a 6 14 6 14
b 15 15 15 15
答案 0 :(得分:2)
unstack
的 swaplevel
s=dfA.unstack()
s
Out[127]:
Sales Units
Week 1 2 1 2
A
a 6 14 6 14
b 15 15 15 15
s.swaplevel(0,1,axis=1).sort_index(level=0,axis=1)
Out[128]:
Week 1 2
Sales Units Sales Units
A
a 6 6 14 14
b 15 15 15 15
答案 1 :(得分:1)
df.pivot_table(index='A', columns='Week', aggfunc='sum').swaplevel(1, 0, 1)
Week 1 2 1 2
Sales Sales Units Units
A
a 6 14 47 10
b 15 15 9 11
df.pivot_table(index='A', columns='Week', aggfunc='sum')
Sales Units
Week 1 2 1 2
A
a 6 14 47 10
b 15 15 9 11