展开坐标列表以获取R

时间:2018-04-05 00:50:31

标签: r coordinates expand

我的DF有大约100万条记录。每个记录包括纬度和经度,记录按示例数据分组(除了更大的组)

data.frame(Latitude=c(-30.25,-30.89,-30.48,-30.10), 
           Longitude=c(116.321,116.98,116.78,116.38), 
           grp=c('a','a','b','b'))

在每组中,我需要找到任意两组坐标之间的最大距离。一旦我在DF中拥有坐标的所有组合,我可以计算距离没有问题,但不能有效地将每个组合变成看起来像这样的DF

data.frame(Latitude1=c(-30.25,-30.25,-30.89,-30.89,-30.48,-30.48,-30.10,-30.10), 
           Longitude1=c(116.321,116.32,116.98,116.98,116.78,116.78,116.38,116.38), 
           Latitude2=c(-30.25,-30.89,-30.25,-30.89,-30.48,-30.10,-30.48,-30.10), 
           Longitude2=c(116.321,116.98,116.98,116.321,116.78,116.38,116.38,116.78), 
           grp=c('a','a','a','a','b','b','b','b'))

我已经编写了一个嵌套循环来执行此操作,但它非常慢,而且我确定有更好的方法。 我看了重复列和使用expand.grid,但可以找到如何使用多个因素 任何帮助,将不胜感激。感谢

2 个答案:

答案 0 :(得分:2)

这样的事情怎么样才能让你开始。我们使用geosphere::distm来计算距离(此处为测地距离):

  1. 根据data.frame

    grp分组
    lst <- split(df, df$grp)
    
  2. 计算测地距离

    library(geosphere);
    dist <- lapply(lst, function(x) distm(x[, c("Longitude", "Latitude")]));
    
  3. 结果是list对称距离矩阵,其中行/列对应于记录。

    dist;
    #$a
    #         [,1]     [,2]
    #[1,]     0.00 95029.27
    #[2,] 95029.27     0.00
    #
    #$b
    #         [,1]     [,2]
    #[1,]     0.00 57056.28
    #[2,] 57056.28     0.00
    
  4. 然后,您可以根据每组的最小距离来过滤记录。你每组只给2分,所以提取最大距离是微不足道的,因为只有一个。

答案 1 :(得分:1)

如果您习惯使用开发/未发布的软件包,我已编写spatialdatatable来对data.table个对象进行有效的地理*计算。

这是一个处理100,000行数据的解决方案。步骤是

  1. 将数据加入到自身,为您提供巨大的点对点数据集
  2. 计算每对点之间的距离(使用半径距离)
  3. 选择每组中的最大距离。
  4. library(data.table)
    # devtools::install_github("SymbolixAU/spatialdatatable")
    library(spatialdatatable)
    
    
    ## generate random data
    lons <- sample(0:180, 1e5, replace = T)
    lats <- sample(-90:1, 1e5, replace = T)
    grp <- sample(letters, 1e5, replace = T)
    df <- data.frame(lon = lons, lat = lats, grp = grp)
    
    ## set as a data.table object, and assign an 'id' to each point
    setDT(df)
    df[, id := .I]
    
    ## 1. join the df to itself to give all points to all other points
    df <- df[
        df
        , on = "grp"
        , nomatch = 0
        , allow.cartesian = T
        ][id != i.id]   ## remove points joined with themselves
    
    ## 2. calculate distances
    df[, dist := spatialdatatable::dtHaversine(lat, lon, i.lat, i.lon)]
    
    ## 3. select greatest distance per group
    df[ df[, .I[which.max(dist)], by = grp]$V1 ][order(grp)]
    
    #     lon lat grp    id i.lon i.lat  i.id     dist
    #  1:   1   0   a 27726   180     0 10996 19903920
    #  2:   1   1   b 63425   180    -3 57218 19766508
    #  3:   1   1   c 18255   177    -2    56 19556799
    #  4:   0  -1   d 43560   179     0  8518 19857865
    #  5: 178  -2   e 37485     0     0 34482 19700640
    #  6:   1  -2   f 79879   180     1 70765 19857889
    #  7: 178   1   g 84268     1    -3 44148 19614379
    #  8: 178  -5   h 49310     1     1  1306 19459455
    #  9:   0   1   i 92786   179    -2 55584 19857889
    # 10: 180   0   j 92704     0     0 36757 20015115
    # 11:   0  -1   k 75760   180     0 71050 19903920
    # 12:   0  -1   l 42202   180     0 10839 19903920
    # 13:   0   1   m 73069   177    -2  2708 19663598
    # 14:   0   1   n 10830   180    -1  1236 20015115
    # 15:   3  -2   o 43380   180     1  3829 19663598
    # 16: 179   1   p 95740     0    -1  3061 19903937
    # 17:   0  -1   q 49476   180     0 18257 19903920
    # 18: 180   0   r 96154     1     0 42435 19903920
    # 19: 180  -1   s 82115     1     0 47784 19857865
    # 20: 178  -2   t 42861     0     0 22020 19700640
    # 21: 180   0   u 22965     0    -1 12158 19903920
    # 22: 178   0   v 18557     0    -2 17457 19700640
    # 23: 178  -2   w 58321     1    -1 13906 19543390
    # 24:   0  -1   x 93181   177    -3 67084 19459211
    # 25:   0  -1   y 46491   178     1  5548 19792759
    # 26:   3   1   z 43109   180    -3   769 19614379
    
    • library(geosphere)
    • 相比