根据位置,天数和数量下方的数据框,我正在寻找一种解决方案,以便在每一天按位置创建数量组合。在生产中,这些组合可能会变得非常大,因此可以理解data.table或plyr方法。
library(gtools)
dat <- data.frame(Loc = c(51,51,51,51,51), Day = c("Mon","Mon","Tue","Tue","Wed"),
Qty = c(1,2,3,4,5))
此示例的输出应为:
Loc Day Qty
1 51 Mon 1
2 51 Tue 3
3 51 Wed 5
4 51 Mon 1
5 51 Tue 4
6 51 Wed 5
7 51 Mon 2
8 51 Tue 3
9 51 Wed 5
10 51 Mon 2
11 51 Tue 4
12 51 Wed 5
我尝试了几个嵌套的lapply让我接近,但后来我不知道如何将它带到下一步并在每个商店中使用combn()函数。
lapply(split(dat, dat$Loc), function(x) {
lapply(split(x, x$Day), function(y) {
y$Qty
})
})
如果每个商店&gt;我都能获得正确的组合。 Day group在它自己的列表中,但我正在努力如何使用split-apply-combine方法从数据框到达那里。
loc51_mon <- c(1,2)
loc51_tue <- c(3,4)
loc51_wed <- c(5)
unlist(lapply(loc51_mon, function(x) {
lapply(loc51_tue, function(y) {
lapply(loc51_wed, function(z) {
combn(c(x,y,z), 3)
})
})
}), recursive = FALSE)
[[1]]
[[1]][[1]]
[,1]
[1,] 1
[2,] 3
[3,] 5
[[2]]
[[2]][[1]]
[,1]
[1,] 1
[2,] 4
[3,] 5
[[3]]
[[3]][[1]]
[,1]
[1,] 2
[2,] 3
[3,] 5
[[4]]
[[4]][[1]]
[,1]
[1,] 2
[2,] 4
[3,] 5
答案 0 :(得分:2)
这应该有效,但是进一步的复杂性需要改变功能:
library(data.table)
dat <- data.frame(Loc = c(51,51,51,51,51), Day = c("Mon","Mon","Tue","Tue","Wed"),
Qty = c(1,2,3,4,5), stringsAsFactors = F)
setDT(dat)
comb_in <- function(Qty_In,Day_In){
temp_df <- aggregate(Qty_In ~ Day_In, cbind(Qty_In, as.character(Day_In)), paste, collapse = "|")
temp_list <- strsplit(temp_df$Qty_In, split = "|", fixed = T)
names(temp_list) <- as.character(temp_df$Day)
melt(as.data.table(expand.grid(temp_list))[, case_group := .I], id.vars = "case_group", variable.name = "Day", value.name = "Qty")
}
dat[, comb_in(Qty_In = Qty, Day_In = Day), by = Loc][order(Loc,case_group,Day)]
Loc case_group Day Qty
1: 51 1 Mon 1
2: 51 1 Tue 3
3: 51 1 Wed 5
4: 51 2 Mon 2
5: 51 2 Tue 3
6: 51 2 Wed 5
7: 51 3 Mon 1
8: 51 3 Tue 4
9: 51 3 Wed 5
10: 51 4 Mon 2
11: 51 4 Tue 4
12: 51 4 Wed 5
您现在可以按case_group
过滤以获得每个组合
答案 1 :(得分:0)
这个问题与How to expand.grid on vectors sets rather than single elements
非常相似用于一般方法(性能可能比指定问题的方法慢):
permu.sets <- function(listoflist) {
#assumes that each list within listoflist contains vectors of equal lengths
temp <- expand.grid(listoflist)
do.call(cbind, lapply(temp, function(x) do.call(rbind, x)))
} #permu.sets
#for the problem posted in OP
dat <- data.frame(Loc = c(51,51,51,51,51), Day = c("Mon","Mon","Tue","Tue","Wed"),
Qty = c(1,2,3,4,5))
vecsets <- lapply(split(dat, dat$Day), function(x) split(as.matrix(x), row(x)))
res <- permu.sets(vecsets)
lapply(split(res, seq(nrow(res))), function(x) matrix(x, ncol=3, byrow=T ))