对于Comparator类中的比较源代码
public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
Function<? super T, ? extends U> keyExtractor)
{
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable) (c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
}
我理解super
和extends
之间的区别。我不明白的是,为什么这种方法有它们。有人可以举例说明当参数看起来像Function<T, U> keyExtractor
时无法实现的内容吗?
例如:
Comparator<Employee> employeeNameComparator = Comparator.comparing(Employee::getName);
也可以使用以下函数定义进行编译
public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
Function<T, U> keyExtractor)
{
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable) (c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
}
答案 0 :(得分:8)
这是一个简单的例子:按重量比较汽车。我将首先以文本形式描述问题,然后展示如果省略? extends
或? super
,它可能出错的每种可能方式。我还展示了在每种情况下都可用的丑陋的部分解决方法。 如果您更喜欢代码而不是散文,请直接跳到第二部分,它应该是不言自明的。
首先,逆变? super T
。
假设您有Car
和PhysicalObject
两个类,Car extends PhysicalObject
。现在假设您有一个扩展Weight
的函数Function<PhysicalObject, Double>
。
如果声明为Function<T,U>
,则您无法重复使用Weight extends Function<PhysicalObject, Double>
函数来比较两辆汽车,因为Function<PhysicalObject, Double>
不符合Function<Car, Double>
。但你显然想要能够按重量比较汽车。因此,逆变? super T
是有意义的,因此Function<PhysicalObject, Double>
符合Function<? super Car, Double>
。
现在是协变? extends U
声明。
假设您有Real
和PositiveReal
两个类PositiveReal extends Real
,并且假设Real
为Comparable
。
假设前一个示例中的函数Weight
实际上具有稍微更精确的类型Weight extends Function<PhysicalObject, PositiveReal>
。如果keyExtractor
的声明为Function<? super T, U>
而不是Function<? super T, ? extends U>
,则您无法利用PositiveReal
也是Real
的事实,因此,两个PositiveReal
无法相互比较,即使它们实现Comparable<Real>
,也没有不必要的限制Comparable<PositiveReal>
。
总结:通过声明Function<? super T, ? extends U>
,Weight extends Function<PhysicalObject, PositiveReal>
可以替换Function<? super Car, ? extends Real>
使用Car
来比较Comparable<Real>
。
我希望这个简单的例子澄清为什么这样的声明是有用的。
? extends
或? super
时的后果的完整列举这是一个可编辑的示例,如果我们省略? super
或? extends
,系统列举所有可能出错的事情。此外,还显示了两个(丑陋的)部分解决方法。
import java.util.function.Function;
import java.util.Comparator;
class HypotheticComparators {
public static <A, B> Comparator<A> badCompare1(Function<A, B> f, Comparator<B> cb) {
return (A a1, A a2) -> cb.compare(f.apply(a1), f.apply(a2));
}
public static <A, B> Comparator<A> badCompare2(Function<? super A, B> f, Comparator<B> cb) {
return (A a1, A a2) -> cb.compare(f.apply(a1), f.apply(a2));
}
public static <A, B> Comparator<A> badCompare3(Function<A, ? extends B> f, Comparator<B> cb) {
return (A a1, A a2) -> cb.compare(f.apply(a1), f.apply(a2));
}
public static <A, B> Comparator<A> goodCompare(Function<? super A, ? extends B> f, Comparator<B> cb) {
return (A a1, A a2) -> cb.compare(f.apply(a1), f.apply(a2));
}
public static void main(String[] args) {
class PhysicalObject { double weight; }
class Car extends PhysicalObject {}
class Real {
private final double value;
Real(double r) {
this.value = r;
}
double getValue() {
return value;
}
}
class PositiveReal extends Real {
PositiveReal(double r) {
super(r);
assert(r > 0.0);
}
}
Comparator<Real> realComparator = (Real r1, Real r2) -> {
double v1 = r1.getValue();
double v2 = r2.getValue();
return v1 < v2 ? 1 : v1 > v2 ? -1 : 0;
};
Function<PhysicalObject, PositiveReal> weight = p -> new PositiveReal(p.weight);
// bad "weight"-function that cannot guarantee that the outputs
// are positive
Function<PhysicalObject, Real> surrealWeight = p -> new Real(p.weight);
// bad weight function that works only on cars
// Note: the implementation contains nothing car-specific,
// it would be the same for every other physical object!
// That means: code duplication!
Function<Car, PositiveReal> carWeight = p -> new PositiveReal(p.weight);
// Example 1
// badCompare1(weight, realComparator); // doesn't compile
//
// type error:
// required: Function<A,B>,Comparator<B>
// found: Function<PhysicalObject,PositiveReal>,Comparator<Real>
// Example 2.1
// Comparator<Car> c2 = badCompare2(weight, realComparator); // doesn't compile
//
// type error:
// required: Function<? super A,B>,Comparator<B>
// found: Function<PhysicalObject,PositiveReal>,Comparator<Real>
// Example 2.2
// This compiles, but for this to work, we had to loosen the output
// type of `weight` to a non-necessarily-positive real number
Comparator<Car> c2_2 = badCompare2(surrealWeight, realComparator);
// Example 3.1
// This doesn't compile, because `Car` is not *exactly* a `PhysicalObject`:
// Comparator<Car> c3_1 = badCompare3(weight, realComparator);
//
// incompatible types: inferred type does not conform to equality constraint(s)
// inferred: Car
// equality constraints(s): Car,PhysicalObject
// Example 3.2
// This works, but with a bad code-duplicated `carWeight` instead of `weight`
Comparator<Car> c3_2 = badCompare3(carWeight, realComparator);
// Example 4
// That's how it's supposed to work: compare cars by their weights. Done!
Comparator<Car> goodComparator = goodCompare(weight, realComparator);
}
}
相关链接
答案 1 :(得分:3)
比方说,我们想用他们使用的飞机来比较商业航班。因此,我们需要一种接收飞行并返回飞机的方法:
Plane func (CommercialFlight)
当然,这是一个Function<CommercialFlight, Plane>
。
现在,重要的是该函数返回Plane
。什么样的飞机返回并不重要。所以这样的方法也应该有效:
CivilianPlane func (CommercialFlight)
现在技术上这是Function<CommercialFlight, CivilianPlane>
,它与Function<CommercialFlight, Plane>. So without the
extends`不同,不允许使用此功能。
同样,另一个重要的是可以接受CommercialFlight
作为参数。所以这样的方法也应该有效:
Plane func (Flight)
从技术上讲,这是Function<Flight, Plane>
,也与Function<CommercialFlight, Plane>
不同。因此,如果没有super
,也不允许使用此函数。