如何拟合线性模型?

时间:2018-01-16 14:36:59

标签: r

我想创建一个这样的函数:

在R中可以使用它作为我发现的一般例子:

fit <- lm(y ~ x1 + x2, data=mydata)

我的数据是:

Ay Ty year
20 11 2009
48 27 2010
35 58 2011

如何才能为我的案子做好准备?

1 个答案:

答案 0 :(得分:3)

显然你想要适合一个线性模型。这是通过lm函数完成的。通常你有更多的数据行,然后系数适合,但它会起作用:

> d <- read.table(header=TRUE, text="Ay Ty year
+ 20 11 2009
+ 48 27 2010
+ 35 58 2011")
> d 
  Ay Ty year
1 20 11 2009
2 48 27 2010
3 35 58 2011
> model <- lm(Ay ~ Ty + year, data = d)
> summary(model)

Call:
lm(formula = Ay ~ Ty + year, data = d)

Residuals:
ALL 3 residuals are 0: no residual degrees of freedom!

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.441e+05         NA      NA       NA
Ty          -2.733e+00         NA      NA       NA
year         7.173e+01         NA      NA       NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared:      1, Adjusted R-squared:    NaN 
F-statistic:   NaN on 2 and 0 DF,  p-value: NA

这将离开你

Ay = -144100 - 2.733 * Ty + 71.73 * year + error

因为残差的平方最小。