我是python的新手,所以请耐心等待。我在Python中使用 odeint 函数解决了一个模型,其中我得到的错误是 func(1)返回的数组大小与y0(2)的大小不匹配。 即可。也许我在 odeint 函数中修复 args 时犯了一个错误,但我在利益溢出时看到了 odeint LINK的一个相关帖子这与返回的参数工作正常。我不知道是什么问题,或者我错误的方向错误。如果我错了,请纠正我。
from scipy import *
from scipy.integrate import odeint
from operator import itemgetter
import matplotlib
matplotlib.use('Agg')
from matplotlib.ticker import FormatStrFormatter
from pylab import *
import sys
ExpData = [1.0 , 1.1660520579009868 , 1.3688685188071037 , 1.6165891026469563 ,
1.9191557810726714 ]
t_range = arange(0.0,20.0,0.1)
y0 = [1,0.5]
VarList = ["a","b"]
ParaList = ["k1","k2"]
k1 = 1
k2 = 2
def func(Y,t,modelID,t1,t2):
return GenModel(Y,modelID,t1,t2)
def GenModel(Y,modelID,t1,t2):
RetY = [None]
if modelID == 1:
RetY = Y[0] + Y[1]
elif modelID == 2:
RetY = t1*Y[0] + Y[1]
elif modelID == 3:
RetY = Y[0] + t1*Y[1]
# code reduced from here
if Y[0] == 0 or Y[1] == 0:
if modelID == 27:
RetY = 0
elif modelID == 28:
RetY = 0
if Y[0] != 0 and Y[1] != 0:
if modelID == 27:
RetY = Y[0]*Y[1]
elif modelID ==28:
RetY = t1*Y[0]*Y[1]
elif modelID == 29:
RetY = t2*Y[0]*Y[1]
# code reduced from here as well
return RetY
def EvalModelFitness(Stofloat,ExpData):
Sum = 0.0
for i in range(len(Stofloat)):
Sum += (Stofloat[i]-ExpData[i])**2
print Sum/len(Stofloat)
if y0[0] == 0 or y0[1] == 0:
NumModels = 28
else:
NumModels = 39
for j in range(1,NumModels+1):
S = odeint(func, y0,t_range,args=(j,k1,k2))
Stofloat = S[:,0].astype(type('float',(float,),{}))
EvalModelFitness(Stofloat,ExpData)
答案 0 :(得分:1)
首先,您似乎并没有在'func'函数的任何地方使用t。
第二,返回的值集的长度必须与Y0的长度匹配。在这里,您从func返回一个值(就像错误状态一样返回1),而Y0的长度为2(就像错误状态一样)。