我有一个90×50的矩阵来保存我的火车数据。每行保存从数字输入图像中提取的特征(已读取90个图像 - 每个数字10个图像)。从10个数字1
图像中提取前10行,从10个图像数字2
中提取第10行,依此类推,因此size(dataset,1) = 90
我的代码的神经网络部分如下所示:
T=zeros(1,90);
for i=1:90
T(i)=ceil(i/10);
end
setdemorandstream(491218382);
net=fitnet(20);
[net,tr]=train(net,datasetNormalized',T);
datasetNormalized是我在[0 1]区间中归一化的数据集。 T是网络的目标。 我现在要做的是获取一个数字的新图像,将其转换为1×50向量(在这种情况下为m_normalized)并在我训练有素的网络的帮助下猜测它是否为数字。我使用下面的代码,但确实会产生错误:
[a,b]=max(sim(net,m_normalized));
disp(b);
msgbox(['digit is: ' num2str(b)],'Digit recognized','help');
错误消息如下所示:
Error using network/sim (line 130)
Input 1 size does not match net.inputs{1}.size.
Error in Neural (line 92)
[a,b]=max(sim(net,m_normalized));
您是否知道如何从脚本中获取输出,该输出显示输入图像的位数? 顺便说一句,完整的脚本代码在这里供进一步参考:
clc
clear
close all
numOfPhotos = 90;
imgRows = 100;
imgCols = 50;
X = zeros(numOfPhotos, (imgRows * imgCols) / 100);
%% Resize Images
% myresize(imgRows,imgCols);
% read train images
datasetIndex = 0;
for i = 1:numOfPhotos/10
for j = 1:numOfPhotos/9
datasetIndex = datasetIndex+1;
im = imread(['resized_train_numbers\' num2str(i) ' (' num2str(j) ').jpg']);
im = im2bw(im, graythresh(im));
c = 1;
for g = 1:imgRows/10
for e = 1:imgCols/10
s = sum(sum(im((g*10-9 : g*10),(e*10-9 : e*10))));
X(datasetIndex, c) = s;
c = c+1;
end
end
end
end
datasetNormalized = zeros(numOfPhotos, imgRows*imgCols/100);
%% Normalize dataset contents
minDataset = min(min(X));
maxDataset = max(max(X));
for i = 1:numOfPhotos
for j = 1:imgRows*imgCols/100
datasetNormalized(i, j) = (X(i, j) - minDataset) / (maxDataset - minDataset);
end
end
%%Neural network part
T = zeros(1, 90);
for i = 1:90
T(i) = ceil(i/10);
end
setdemorandstream(491218382);
net = fitnet(20);
[net, tr]=train(net, datasetNormalized', T);
% Read input image for recognition
newImg = imread('plate_1\1.jpg');
newImg = imresize(newImg, [imgRows imgCols]);
newImg = im2bw(newImg, graythresh(newImg));
scrsz = get(0, 'ScreenSize');
figure('Position', [1 1 scrsz(3)/3 scrsz(4)/2]),
imshow(newImg);
m = zeros(1, imgRows*imgCols/100);
c = 1;
for g = 1:imgRows/10
for e = 1:imgCols/10
s = sum(sum(newImg((g*10-9 : g*10), (e*10-9 : e*10))));
m(c) = s;
c = c+1;
end
end
%Normalize m contents
m_normalized = zeros(1, imgRows*imgCols/100);
for i = 1:imgRows*imgCols/100
m_normalized(i) = (m(i)-min(m)) / (max(m)-min(m));
end
[a,b] = max(sim(net, m_normalized));
disp(b);
msgbox(['digit is: ' num2str(b)], 'Digit recognized', 'help');
答案 0 :(得分:3)
b=sim(net,m_normalized);
b=sim(net,m_normalized');