Matlab神经网络错误:输入1大小与net.inputs {1} .size不匹配

时间:2014-01-22 21:23:13

标签: matlab neural-network

我有一个90×50的矩阵来保存我的火车数据。每行保存从数字输入图像中提取的特征(已读取90个图像 - 每个数字10个图像)。从10个数字1图像中提取前10行,从10个图像数字2中提取第10行,依此类推,因此size(dataset,1) = 90

我的代码的神经网络部分如下所示:

T=zeros(1,90);
for  i=1:90
    T(i)=ceil(i/10);
end
setdemorandstream(491218382);
net=fitnet(20);

[net,tr]=train(net,datasetNormalized',T);

datasetNormalized是我在[0 1]区间中归一化的数据集。 T是网络的目标。 我现在要做的是获取一个数字的新图像,将其转换为1×50向量(在这种情况下为m_normalized)并在我训练有素的网络的帮助下猜测它是否为数字。我使用下面的代码,但确实会产生错误:

[a,b]=max(sim(net,m_normalized));
disp(b);
 msgbox(['digit is: ' num2str(b)],'Digit recognized','help');

错误消息如下所示:

Error using network/sim (line 130)
Input 1 size does not match net.inputs{1}.size.

Error in Neural (line 92)
[a,b]=max(sim(net,m_normalized));

您是否知道如何从脚本中获取输出,该输出显示输入图像的位数? 顺便说一句,完整的脚本代码在这里供进一步参考:

clc
clear
close all

numOfPhotos = 90;
imgRows = 100;
imgCols = 50;
X = zeros(numOfPhotos, (imgRows * imgCols) / 100);

%% Resize Images
% myresize(imgRows,imgCols);

% read train images
datasetIndex = 0;    

for i = 1:numOfPhotos/10
    for j = 1:numOfPhotos/9           
        datasetIndex = datasetIndex+1;
        im = imread(['resized_train_numbers\' num2str(i) ' (' num2str(j) ').jpg']);
        im = im2bw(im, graythresh(im));    

        c = 1;
        for g = 1:imgRows/10
            for e = 1:imgCols/10
                s = sum(sum(im((g*10-9 : g*10),(e*10-9 : e*10))));
                X(datasetIndex, c) = s;
                c = c+1;            
            end    
        end
    end
end

datasetNormalized = zeros(numOfPhotos, imgRows*imgCols/100);
%% Normalize dataset contents
minDataset = min(min(X));
maxDataset = max(max(X));
for i = 1:numOfPhotos
    for j = 1:imgRows*imgCols/100
        datasetNormalized(i, j) = (X(i, j) - minDataset) / (maxDataset - minDataset);
    end
end

%%Neural network part

T = zeros(1, 90);
for  i = 1:90
    T(i) = ceil(i/10);
end

setdemorandstream(491218382);
net = fitnet(20);
[net, tr]=train(net, datasetNormalized', T);

% Read input image for recognition

newImg = imread('plate_1\1.jpg');
newImg = imresize(newImg, [imgRows imgCols]);
newImg = im2bw(newImg, graythresh(newImg));
scrsz = get(0, 'ScreenSize');
figure('Position', [1 1 scrsz(3)/3 scrsz(4)/2]),
imshow(newImg);

m = zeros(1, imgRows*imgCols/100);
c = 1;
for g = 1:imgRows/10
    for e = 1:imgCols/10
        s = sum(sum(newImg((g*10-9 : g*10), (e*10-9 : e*10))));
        m(c) = s;
        c = c+1;            
    end
end

%Normalize m contents
m_normalized = zeros(1, imgRows*imgCols/100);
for i = 1:imgRows*imgCols/100    
    m_normalized(i) = (m(i)-min(m)) / (max(m)-min(m));
end

[a,b] = max(sim(net, m_normalized));
disp(b);
msgbox(['digit is: ' num2str(b)], 'Digit recognized', 'help');

1 个答案:

答案 0 :(得分:3)

用于训练神经网络的输入的大小和训练后用于模拟网络的输入必须匹配。在上面的问题中,输入是50x90矩阵。每列代表一个数字。每列都有相应的输出。所以模拟结果(输出)被分配到一个变量(b)然后显示。 上面生成错误的代码是这样的:
b=sim(net,m_normalized);
由于m_normalized是输入,因此必须匹配用于训练网络的列。让我们说它是其中一个专栏。因此我们必须将其转换为50x1向量以匹配50x90形式的训练输入:
b=sim(net,m_normalized');
修正错误。