我想使用' KDtree'(这是最佳选择。其他' KNN'算法对我的项目来说不是最佳选择)具有自定义距离指标。我在这里检查了一些类似问题的答案,这应该有用......但是没有。
distance_matrix是symetric,应该按照定义:
array([[ 1., 0., 5., 5., 0., 3., 2.],
[ 0., 1., 0., 0., 0., 0., 0.],
[ 5., 0., 1., 5., 0., 2., 3.],
[ 5., 0., 5., 1., 0., 4., 4.],
[ 0., 0., 0., 0., 1., 0., 0.],
[ 3., 0., 2., 4., 0., 1., 0.],
[ 2., 0., 3., 4., 0., 0., 1.]])
我知道我的衡量标准不是正式的衡量标准,但在documentation中,它表示我的功能必须是正式的衡量标准,只有当我'使用'球树'(在User-defined distance:
下)。
这是我的代码:
from sklearn.neighbors import DistanceMetric
def dist(x, y):
dist = 0
for elt_x, elt_y in zip(x, y):
dist += distance_matrix[elt_x, elt_y]
return dist
X = np.array([[1,0], [1,2], [1,3]])
tree = KDtree(X, metric=dist)
我收到此错误:
NameError
Traceback (most recent call last)
<ipython-input-27-b5fac7810091> in <module>()
7 return dist
8 X = np.array([[1,0], [1,2], [1,3]])
----> 9 tree = KDtree(X, metric=dist)
NameError: name 'KDtree' is not defined
我也试过了:
from sklearn.neighbors import KDTree
def dist(x, y):
dist = 0
for elt_x, elt_y in zip(x, y):
dist += distance_matrix[elt_x, elt_y]
return dist
X = np.array([[1,0], [1,2], [1,3]])
tree = KDTree(X, metric=lambda a,b: dist(a,b))
我收到此错误:
ValueError
Traceback (most recent call last)
<ipython-input-27-b5fac7810091> in <module>()
7 return dist
8 X = np.array([[1,0], [1,2], [1,3]])
----> 9 tree = KDtree(X, metric=dist)
ValueError: metric PyFuncDistance is not valid for KDTree
我也尝试过:
from sklearn.neighbors import NearestNeighbors
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree', metric=dist_metric)
我收到以下错误:
ValueError Traceback (most recent call last)
<ipython-input-32-c78d02cacb5a> in <module>()
1 from sklearn.neighbors import NearestNeighbors
----> 2 nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree', metric=dist_metric)
/usr/local/lib/python3.5/dist-packages/sklearn/neighbors/unsupervised.py in __init__(self, n_neighbors, radius, algorithm, leaf_size, metric, p, metric_params, n_jobs, **kwargs)
121 algorithm=algorithm,
122 leaf_size=leaf_size, metric=metric, p=p,
--> 123 metric_params=metric_params, n_jobs=n_jobs, **kwargs)
/usr/local/lib/python3.5/dist-packages/sklearn/neighbors/base.py in _init_params(self, n_neighbors, radius, algorithm, leaf_size, metric, p, metric_params, n_jobs)
138 raise ValueError(
139 "kd_tree algorithm does not support callable metric '%s'"
--> 140 % metric)
141 elif metric not in VALID_METRICS[alg_check]:
142 raise ValueError("Metric '%s' not valid for algorithm '%s'"
ValueError: kd_tree algorithm does not support callable metric '<function dist_metric at 0x7f58c2b3fd08>'
我尝试了所有其他算法(auto,brute,...),但是它会发出相同的错误。
我必须使用距离矩阵作为向量的元素,因为元素是特征的代码,5可以比3更接近1.我需要的是获得前3个邻居(从最近到最远的排序)。
答案 0 :(得分:7)
Scikit-learn的KDTree
不支持自定义距离指标。 BallTree
确实支持自定义距离指标,但请注意:由用户决定提供的指标是actually a valid metric:如果不是,算法会愉快地返回查询结果,但结果不正确。
此外,您应该知道,使用自定义Python函数作为度量标准通常太慢而无法使用,因为在遍历树时Python回调的开销。