pandas TimedeltaIndex
有一个属性days
,可用于其他正常dtypes(float64
等)的操作:
import pandas as pd
from pandas.tseries import offsets
idx1 = pd.date_range('2017-01', periods=10)
idx2 = idx1 + offsets.MonthEnd(1)
tds = idx2 - idx1
print(tds.days - 2)
Int64Index([28, 27, 26, 25, 24, 23, 22, 21, 20, 19], dtype='int64')
但是当tds
转换为系列(显式或作为DataFrame列)时,它会丢失此属性。
print(pd.Series(tds).days)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-115-cb20b4d368f4> in <module>()
----> 1 print(pd.Series(tds).days)
C:\Users\bsolomon\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
3079 if name in self._info_axis:
3080 return self[name]
-> 3081 return object.__getattribute__(self, name)
3082
3083 def __setattr__(self, name, value):
AttributeError: 'Series' object has no attribute 'days'
访问.days
需要转换回Index
:
print(pd.Index(pd.Series(tds)).days)
Int64Index([30, 29, 28, 27, 26, 25, 24, 23, 22, 21], dtype='int64')
访问此属性的方式是否比上述转换更直接?
答案 0 :(得分:4)
使用.dt
访问者:
print(pd.Series(tds).dt.days)
输出:
0 30
1 29
2 28
3 27
4 26
5 25
6 24
7 23
8 22
9 21
dtype: int64