我试图使用Tensorflow的对象检测API来训练模型。
我正在使用更快的rcnn resnet101(https://github.com/tensorflow/models/blob/master/object_detection/samples/configs/faster_rcnn_resnet101_voc07.config)的示例配置。
以下代码是配置文件的一部分,我不太明白:
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
我的问题是:
min_dimension
和max_dimension
的确切含义是什么?是否意味着输入图像的大小将调整为600x1024或1024x600?min_dimension
和max_dimension
的价值吗?我有这样的问题的原因来自这篇文章: TensorFlow Object Detection API Weird Behaviour
在这篇文章中,作者自己回答了这个问题:
然后我决定裁剪输入图像并将其作为输入提供。只是为了看看结果是否有所改善而且确实如此!
事实证明,输入图像的尺寸远大于模型所接受的600 x 1024。因此,它将这些图像缩小到600 x 1024,这意味着香烟盒正在丢失它们的细节:)
它使用了我使用的相同配置。 我不确定是否可以更改这些参数,如果它们是默认或建议设置为此特殊模型,fast_rcnn_resnet101。
答案 0 :(得分:6)
经过一些测试,我想我找到了答案。如果有任何问题,请纠正我。
在.config文件中:
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
根据'object_detection / builders / image_resizer_builder.py'的图像缩放器设置
if image_resizer_config.WhichOneof(
'image_resizer_oneof') == 'keep_aspect_ratio_resizer':
keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer
if not (keep_aspect_ratio_config.min_dimension
<= keep_aspect_ratio_config.max_dimension):
raise ValueError('min_dimension > max_dimension')
return functools.partial(
preprocessor.resize_to_range,
min_dimension=keep_aspect_ratio_config.min_dimension,
max_dimension=keep_aspect_ratio_config.max_dimension)
然后它尝试使用'object_detection / core / preprocessor.py'的'resize_to_range'函数
with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
image_shape = tf.shape(image)
orig_height = tf.to_float(image_shape[0])
orig_width = tf.to_float(image_shape[1])
orig_min_dim = tf.minimum(orig_height, orig_width)
# Calculates the larger of the possible sizes
min_dimension = tf.constant(min_dimension, dtype=tf.float32)
large_scale_factor = min_dimension / orig_min_dim
# Scaling orig_(height|width) by large_scale_factor will make the smaller
# dimension equal to min_dimension, save for floating point rounding errors.
# For reasonably-sized images, taking the nearest integer will reliably
# eliminate this error.
large_height = tf.to_int32(tf.round(orig_height * large_scale_factor))
large_width = tf.to_int32(tf.round(orig_width * large_scale_factor))
large_size = tf.stack([large_height, large_width])
if max_dimension:
# Calculates the smaller of the possible sizes, use that if the larger
# is too big.
orig_max_dim = tf.maximum(orig_height, orig_width)
max_dimension = tf.constant(max_dimension, dtype=tf.float32)
small_scale_factor = max_dimension / orig_max_dim
# Scaling orig_(height|width) by small_scale_factor will make the larger
# dimension equal to max_dimension, save for floating point rounding
# errors. For reasonably-sized images, taking the nearest integer will
# reliably eliminate this error.
small_height = tf.to_int32(tf.round(orig_height * small_scale_factor))
small_width = tf.to_int32(tf.round(orig_width * small_scale_factor))
small_size = tf.stack([small_height, small_width])
new_size = tf.cond(
tf.to_float(tf.reduce_max(large_size)) > max_dimension,
lambda: small_size, lambda: large_size)
else:
new_size = large_size
new_image = tf.image.resize_images(image, new_size,
align_corners=align_corners)
从上面的代码中,我们可以知道我们是否有一个大小为800 * 1000的图像。最终输出图像的大小为600 * 750。
也就是说,此图像缩放器将始终根据“min_dimension”和“max_dimension”的设置调整输入图像的大小。