我正在使用opencv python教程中的功能点检测教程,如下所示:
def drawMatches(img1, kp1, img2, kp2, matches):
# Create a new output image that concatenates the two images together
# (a.k.a) a montage
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8')
# Place the first image to the left
out[:rows1,:cols1] = np.dstack([img1, img1, img1])
# Place the next image to the right of it
out[:rows2,cols1:] = np.dstack([img2, img2, img2])
# For each pair of points we have between both images
# draw circles, then connect a line between them
for mat in matches:
# Get the matching keypoints for each of the images
img1_idx = mat.queryIdx
img2_idx = mat.trainIdx
# x - columns
# y - rows
(x1,y1) = kp1[img1_idx].pt
(x2,y2) = kp2[img2_idx].pt
# Draw a small circle at both co-ordinates
# radius 4
# colour blue
# thickness = 1
cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1)
cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1)
# Draw a line in between the two points
# thickness = 1
# colour blue
cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1)
# Show the image
cv2.imshow('Matched Features', out)
cv2.waitKey(0)
cv2.destroyWindow('Matched Features')
# Also return the image if you'd like a copy
return out
def feature_matching():
img1 = cv2.imread('image3.jpeg', 0)
img2 = cv2.imread('image2.jpeg', 0)
# Initiate SIFT detector
sift = cv2.SIFT()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append(m)
#gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
#gray2 = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = drawMatches(img1,kp1,img2,kp2,good)
plt.imshow(img3),plt.show()
我有一个训练数据集,其中特定物体可以有3到4个不同方向的图像,照明等。
我有一个测试数据集,其中包含来自训练数据集中的一个对象的图像(具有不同的方向,大小,角度等)&amp; n图像名称如[XYZ,ABC,DEF,..等],因此测试数据集就像(test_image, [XYZ, ABC, DEF, ..etc.])
。因此,假设test_image
是对象XYZ
(训练集将该对象的图像名称设置为XYZ_1,XYZ_2,XYZ_3等),那么测试数据集的输出应为{{ 1}}。
如何使用特征点检测来做到这一点?有没有办法使用训练数据集创建训练模型,保存它然后能够在测试数据集上使用它?
任何帮助将不胜感激!