我有一个名为" data_grouped"。
的系列action_time
2017-02-16 00:00:00 23
2017-02-16 00:00:01 24
2017-02-16 00:00:02 22
2017-02-16 00:00:03 18
2017-02-16 00:00:04 20
2017-02-16 00:00:05 24
2017-02-16 00:00:06 16
2017-02-16 00:00:07 13
2017-02-16 00:00:08 18
2017-02-16 00:00:09 20
2017-02-16 00:00:10 16
2017-02-16 00:00:11 22
2017-02-16 00:00:12 22
2017-02-16 00:00:13 9
2017-02-16 00:00:14 13
2017-02-16 00:00:15 23
2017-02-16 00:00:16 18
2017-02-16 00:00:17 13
2017-02-16 00:00:18 18
2017-02-16 00:00:19 19
2017-02-16 00:00:20 20
2017-02-16 00:00:21 24
2017-02-16 00:00:22 19
2017-02-16 00:00:23 24
2017-02-16 00:00:24 24
2017-02-16 00:00:25 24
2017-02-16 00:00:26 15
2017-02-16 00:00:27 28
2017-02-16 00:00:28 19
2017-02-16 00:00:29 27
..
2017-02-16 23:59:30 27
2017-02-16 23:59:31 21
2017-02-16 23:59:32 27
2017-02-16 23:59:33 21
2017-02-16 23:59:34 20
2017-02-16 23:59:35 21
2017-02-16 23:59:36 18
2017-02-16 23:59:37 30
2017-02-16 23:59:38 16
2017-02-16 23:59:39 24
2017-02-16 23:59:40 19
2017-02-16 23:59:41 34
2017-02-16 23:59:42 24
2017-02-16 23:59:43 23
2017-02-16 23:59:44 29
2017-02-16 23:59:45 23
2017-02-16 23:59:46 28
2017-02-16 23:59:47 16
2017-02-16 23:59:48 32
2017-02-16 23:59:49 22
2017-02-16 23:59:50 26
2017-02-16 23:59:51 25
2017-02-16 23:59:52 27
2017-02-16 23:59:53 36
2017-02-16 23:59:54 26
2017-02-16 23:59:55 22
2017-02-16 23:59:56 22
2017-02-16 23:59:57 27
2017-02-16 23:59:58 19
2017-02-16 23:59:59 20
Name: action_type, Length: 85913, dtype: int64
索引是DatetimeIndex。 DatetimeIndex来自" 2017-02-16 00:00:00"到" 2017-02-16 23:59:59"。我想每小时汇总一次。并用横轴绘制它是时间。
答案 0 :(得分:1)
我认为您需要Series.resample
+汇总功能sum
+ Series.plot
:
s.resample('H').sum().plot()
s.groupby(pd.Grouper(freq='H')).sum().plot()