我有一个Dataframe:
df =
A B C D
DATA_DATE
20170103 5.0 3.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 1.0 NaN 2.0 3.0
我有一个系列
s =
DATA_DATE
20170103 4.0
20170104 0.0
20170105 2.2
我想运行一个元素明确的max()
函数,并在s
的列上对齐df
。换句话说,我想得到
result =
A B C D
DATA_DATE
20170103 5.0 4.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 2.2 NaN 2.2 3.0
最好的方法是什么?我已经检查了single column comparison和series to series comparison,但没有找到针对系列运行数据帧的有效方法。
奖励:不确定答案是否从上面不言而喻,但如果我想在s
的行上对齐df
,该怎么做(假设尺寸匹配)?
答案 0 :(得分:8)
数据:
In [135]: df
Out[135]:
A B C D
DATA_DATE
20170103 5.0 3.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 1.0 NaN 2.0 3.0
In [136]: s
Out[136]:
20170103 4.0
20170104 0.0
20170105 2.2
Name: DATA_DATE, dtype: float64
解决方案:
In [66]: df.clip_lower(s, axis=0)
C:\Users\Max\Anaconda4\lib\site-packages\pandas\core\ops.py:1247: RuntimeWarning: invalid value encountered in greater_equal
result = op(x, y)
Out[66]:
A B C D
DATA_DATE
20170103 5.0 4.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 2.2 NaN 2.2 3.0
我们可以使用以下hack来消除RuntimeWarning
:
In [134]: df.fillna(np.inf).clip_lower(s, axis=0).replace(np.inf, np.nan)
Out[134]:
A B C D
DATA_DATE
20170103 5.0 4.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 2.2 NaN 2.2 3.0
答案 1 :(得分:7)
这称为广播,可以按如下方式进行:
import numpy as np
np.maximum(df, s[:, None])
Out:
A B C D
DATA_DATE
20170103 5.0 4.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 2.2 NaN 2.2 3.0
此处,s[:, None]
会向s
添加新轴。 s[:, np.newaxis]
可以实现同样的目标。执行此操作时,可以将它们一起广播,因为形状(3, 4)
和(3, 1)
具有共同元素。
请注意s
和s[:, None]
:
s.values
Out: array([ 4. , 0. , 2.2])
s[:, None]
Out:
array([[ 4. ],
[ 0. ],
[ 2.2]])
s.shape
Out: (3,)
s[:, None].shape
Out: (3, 1)
另一种选择是:
df.mask(df.le(s, axis=0), s, axis=0)
Out:
A B C D
DATA_DATE
20170103 5.0 4.0 NaN NaN
20170104 NaN NaN NaN 1.0
20170105 2.2 NaN 2.2 3.0
这是:比较df和s。如果df较大,请使用df,否则使用s。
答案 2 :(得分:0)
虽然可能有更好的解决方案来解决您的问题,但我相信这应该能满足您的需求:
for c in df.columns:
df[c] = pd.concat([df[c], s], axis=1).max(axis=1)