我正在尝试找出如何使用GridSearchCV进行线性回归,但是我得到了一个令人讨厌的错误,如果这是一个估算器的问题,对于GridSearchCV不正确或者这是我的“LogisticRegression” “这没有正确设置。我让它适用于随机森林和knn,但我坚持这个实现。
我使用了一个小数据集,这就是我想使用liblinear的原因(即使它是默认的,如文档中所述)。
tuned_parameters = {'C': [0.1, 0.5, 1, 5, 10, 50, 100]}
clf = GridSearchCV(LogisticRegression(solver='liblinear'), tuned_parameters, cv=5, scoring="accuracy")
clf.fit(X_train, y_train)
和错误:
StratifiedShuffleSplit(n_splits=1, random_state=0, test_size=0.4,
train_size=None)
Traceback (most recent call last):
File "linearRegression.py", line 105, in <module>
clf.fit(X_train, y_train)
File "/usr/local/lib/python2.7/dist-packages/sklearn/model_selection/_search.py", line 945, in fit
return self._fit(X, y, groups, ParameterGrid(self.param_grid))
File "/usr/local/lib/python2.7/dist-packages/sklearn/model_selection/_search.py", line 564, in _fit
for parameters in parameter_iterable
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 758, in __call__
while self.dispatch_one_batch(iterator):
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 608, in dispatch_one_batch
self._dispatch(tasks)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 571, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/_parallel_backends.py", line 109, in apply_async
result = ImmediateResult(func)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/_parallel_backends.py", line 326, in __init__
self.results = batch()
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/usr/local/lib/python2.7/dist-packages/sklearn/model_selection/_validation.py", line 260, in _fit_and_score
test_score = _score(estimator, X_test, y_test, scorer)
File "/usr/local/lib/python2.7/dist-packages/sklearn/model_selection/_validation.py", line 288, in _score
score = scorer(estimator, X_test, y_test)
File "/usr/local/lib/python2.7/dist-packages/sklearn/metrics/scorer.py", line 91, in __call__
y_pred = estimator.predict(X)
File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/base.py", line 336, in predict
scores = self.decision_function(X)
File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/base.py", line 320, in decision_function
dense_output=True) + self.intercept_
File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/extmath.py", line 189, in safe_sparse_dot
return fast_dot(a, b)
TypeError: Cannot cast array data from dtype([('f0', 'f8'), ('f1','f8')]) to dtype('float64') according to the rule 'safe'
我阅读了文档: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
和
感谢您的帮助。
编辑: X和Y的形状:
X = np.array(Xlist,np.dtype('float,float'))# - &gt;两个花车作为功能 y = np.array(ylist,np.dtype('int'))# - &gt;标签0或1
例如: X_train是
[[(0.0,0.0)(3.85,0.0)] [(3.6,0.0)(2.45,0.0)] [(1.1,0.0) (1.35,0.0)] [(3.7,0.0)(1.85,0.0)]]
Y_train是
[1 0 0 0 1 0 1 1]
答案 0 :(得分:1)
是否可以将X数据集作为元组列表输入:(A,B),而不是数组列表:[A,B]?
我能够使用scikit-learn == 0.18.1:
运行以下代码## Libraries
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
X = [[0.0, 0.0], [3.85, 0.0], [3.6, 0.0], [2.45, 0.0], [1.1, 0.0], [1.35, 0.0], [3.7, 0.0], [1.85, 0.0]]
y = [1, 0, 0, 0, 1, 0, 1, 1]
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.33, random_state=42)
tuned_parameters = {'C': [0.1, 0.5, 1, 5, 10, 50, 100]}
clf = GridSearchCV(LogisticRegression(solver='liblinear'), tuned_parameters, cv=3, scoring="accuracy")
clf.fit(X_train, y_train)
注意:我必须减少GridSearchCV的cv属性,因为没有足够大的数据集分为5个部分。
答案 1 :(得分:0)
我正在使用:
X = np.array(Xlist,np.dtype('float,float'))
y = np.array(ylist,np.dtype('int'))
即使它正在使用这些分类器,它也不会很好地使用这个估算器:
SVC(kernel =&#39; rbf&#39;),SVC(kernel =&#39; linear&#39;),SVC(kernel =&#39; poly&#39;),NeighborsClassifier(),DecisionTreeClassifier (),RandomForestClassifier()
所以我只是将这两行替换为:
X = np.asarray(Xlist)
y = np.asarray(ylist)