我有一个数据框resultstatsDF
resultstatsDF = DataFrame({'a': [1,2,3,4,5]})
resultstatsDF['file'] = 'asdf'
resultstatsDF.dtypes
a int64
file object
dtype: object
我希望将object
列file
转换为字符串:
我试过
resultstatsDF = resultstatsDF.astype({'file': str})
resultstatsDF['file'] = resultstatsDF['file'].astype(str)
resultstatsDF['file'] = resultstatsDF['file'].to_string
resultstatsDF['file'] = resultstatsDF.file.apply(str)
resultstatsDF['file'] = resultstatsDF['file'].apply(str)
但无论我做什么,当我用
检查时resultstatsDF.dtypes
列file
保持为tpye object
。
答案 0 :(得分:3)
dtype
,string
,dict
始终为list
,对于测试object
,需要选择一些列值,例如iat
:
type
样品:
type(resultstatsDF['file'].iat[0])
样品:
resultstatsDF = pd.DataFrame({'file':['a','d','f']})
print (resultstatsDF)
file
0 a
1 d
2 f
print (type(resultstatsDF['file'].iloc[0]))
<class 'str'>
print (resultstatsDF['file'].apply(type))
0 <class 'str'>
1 <class 'str'>
2 <class 'str'>
Name: file, dtype: object
所有值都具有相同的dtypes
:
df = pd.DataFrame({'strings':['a','d','f'],
'dicts':[{'a':4}, {'c':8}, {'e':9}],
'lists':[[4,8],[7,8],[3]],
'tuples':[(4,8),(7,8),(3,)],
'sets':[set([1,8]), set([7,3]), set([0,1])] })
print (df)
dicts lists sets strings tuples
0 {'a': 4} [4, 8] {8, 1} a (4, 8)
1 {'c': 8} [7, 8] {3, 7} d (7, 8)
2 {'e': 9} [3] {0, 1} f (3,)
但是print (df.dtypes)
dicts object
lists object
sets object
strings object
tuples object
dtype: object
是不同的,如果需要通过循环检查:
type
或列的第一个值:
for col in df:
print (df[col].apply(type))
0 <class 'dict'>
1 <class 'dict'>
2 <class 'dict'>
Name: dicts, dtype: object
0 <class 'list'>
1 <class 'list'>
2 <class 'list'>
Name: lists, dtype: object
0 <class 'set'>
1 <class 'set'>
2 <class 'set'>
Name: sets, dtype: object
0 <class 'str'>
1 <class 'str'>
2 <class 'str'>
Name: strings, dtype: object
0 <class 'tuple'>
1 <class 'tuple'>
2 <class 'tuple'>
Name: tuples, dtype: object
如果可能,boolean indexing
混合列(然后可以破坏一些pandas功能)可以按print (type(df['strings'].iat[0]))
<class 'str'>
print (type(df['dicts'].iat[0]))
<class 'dict'>
print (type(df['lists'].iat[0]))
<class 'list'>
print (type(df['tuples'].iat[0]))
<class 'tuple'>
print (type(df['sets'].iat[0]))
<class 'set'>
过滤:
type
df = pd.DataFrame({'mixed':['3', 5, 9,'2']})
print (df)
mixed
0 3
1 5
2 9
3 2
print (df.dtypes)
mixed object
dtype: object