MS Access,摘要统计(平均值,中位数,标准差,第1和第3四分位数)

时间:2017-01-06 18:49:28

标签: ms-access statistics mean access standard-deviation

我想从MS Access获取摘要统计信息,其中显示正常,中位数,标准差和来自普通表格的四分位数

1 个答案:

答案 0 :(得分:0)

使用VBA的原生方法/功能可以轻松计算出前三个。

然而,由于方法的变化太多,四分位数要差得多。但是这个功能应该涵盖大部分内容:

Public Function GetQuartile( _
  ByVal strTable As String, _
  ByVal strField As String, _
  ByVal bytQuartile As Byte, _
  Optional ByVal bytMethod As Byte, _
  Optional ByVal strFilter As String) _
  As Double
  
  ' strTable :    Name of the table/query to analyze.
  ' strField :    Name of the field to analyze.
  ' bytQuartile:  Which min/max or median/quartile to calculate.
  ' bytMethod:    Method for calculation of lower/higher quartile.
  ' strFilter:    Optional filter expression.
  '
  ' Returns:
  '   Minimum, maximum, median or upper/lower quartile
  '   of strField of strTable filtered on strFilter.
  '
  ' 2006-03-05. Cactus Data ApS, CPH.
  
    
    ' Reference for methods for calculation as explained here:
    '   http://www.daheiser.info/excel/notes/noteh.pdf 
    ' Note: Table H-4, p. 4, has correct data for dataset 1-96 while
    '   datasets 1-100 to 1-97 actually are datasets 1-99 to 1-96
    '   shifted one column left.
    '   Thus, the dataset 1-100 is missing.
    '
    '   Method 3b is not implemented as no one seems to use it.
    '   Neither are no example data given.
    '
    ' Further notes on methods here:
    '   http://mathforum.org/library/drmath/view/60969.html 
    '   http://www.haiweb.org/medicineprices/manual/quartiles_iTSS.pdf 
    '
    ' Data must be in ascending order by strField.
    
    
    ' L: Q1, Lower quartile.
    ' H: Q3, Higher quartile.
    ' M: Q2, Median.
    ' n: Count of elements.
    ' p: Calculated position of quartile.
    ' j: Element of dataset.
    ' g: Decimal part of p
    '    to be used for interpolation between j and j+1.
    
    ' Basic operation.
    ' Constant values mimic those of Excel's Quartile() function.
    
    ' Find median.
    Const cbytQuartMedian             As Byte = 2
    ' Find lower (first) quartile.
    Const cbytQuartLow                As Byte = 1
    ' Find upper (third) quartile.
    Const cbytQuartHigh               As Byte = 3
    ' Find minimum value.
    Const cbytQuartMinimum            As Byte = 0
    ' Find maximum value.
    Const cbytQuartMaximum            As Byte = 4
    
    ' Define default operation.
    Const cbytQuartDefault = cbytQuartMedian
    
    ' Quartile calculation methods.
    
    ' Step. Mendenhall and Sincich method.
    ' SAS #3.
    ' Round up to actual element of dataset.
    ' L: -Int(-n/4)
    ' H: n-Int(-n/4)
    Const cbytMethodMendenhallSincich As Byte = 1
    
    ' Average step.
    ' SAS #5, Minitab (%DESCRIBE), GLIM (percentile).
    ' Add bias of one or two on basis of n/4.
    ' L: (Int((n+1)/4)+Int(n/4))/2+1
    ' H: n-(Int((n+1)/4)+Int(n/4))/2+1
    Const cbytMethodAverage           As Byte = 2
    
    ' Nearest integer to np.
    ' SAS #2.
    ' Round to nearest integer on basis of n/4.
    ' L: Int((n+2)/4)
    ' H: n-Int((n+2)/4)
    ' Note:
    '   Reference contains an error in example data.
    '   Dataset 1-100 to 1-97 (is really 1-99 to 1-96!) should read:
    '   25  25  24  24
    Const cbytMethodNearestInteger    As Byte = 3
    
    ' Parzen method.
    ' Method 1 with interpolation.
    ' SAS #1.
    ' L: n/4
    ' H: 3n/4
    Const cbytMethodParzen            As Byte = 4
    
    ' Hazen method.
    ' Values midway between method 1 steps.
    ' GLIM (interpolate).
    ' Add bias of 2, don't round to actual element of dataset.
    ' L: (n+2)/4
    ' H: 3(n+2)/4
    Const cbytMethodHazen             As Byte = 5
    
    ' Weibull method.
    ' SAS #4. Minitab (DECRIBE), SPSS, BMDP.
    ' Add bias of 1, don't round to actual element of dataset.
    ' L: (n+1)/4
    ' H: 3(n+1)/4
    Const cbytMethodWeibull           As Byte = 6
    
    ' Freund, J. and Perles, B., Gumbell method.
    ' S-PLUS, R, Excel, Star Office Calc.
    ' Add bias of 3, don't round to actual element of dataset.
    ' L: (n+3)/4
    ' H: (3n+1)/4
    Const cbytMethodFreundPerles      As Byte = 7
    
    ' Median Position.
    ' Median unbiased.
    ' L: (3n+5)/12
    ' H: (9n+7)/12
    Const cbytMethodMedianPosition    As Byte = 8
    
    ' Bernard and Bos-Levenbach.
    ' L: (n/4)+0.4
    ' H: (3n/4)/+0.6
    ' Note:
    '   Reference claims L to be (n/4)+0.31.
    Const cbytMethodBernardLevenbach  As Byte = 9
    
    ' Blom's Plotting Position.
    ' Better approximation when the distribution is normal.
    ' L: (4n+7)/16
    ' H: (12n+9)/16
    Const cbytMethodBlom              As Byte = 10
    
    ' Moore's first method.
    ' Add bias of one half step.
    ' L: (n+0.5)/4
    ' H: n-(n+0.5)/4
    Const cbytMethodMoore1            As Byte = 11
    
    ' Moore's second method.
    ' Add bias of one or two steps on basis of (n+1)/4.
    ' L: (Int((n+1)/4)+Int(n/4))/2+1
    ' H: n-(Int((n+1)/4)+Int(n/4))/2+1
    Const cbytMethodMoore2            As Byte = 12
    
    ' John Tukey's method.
    ' Include median from odd dataset in dataset for quartile.
    ' L: (1-Int(-n/2))/2
    ' H: n-(1-Int(-n/2))/2
    Const cbytMethodTukey             As Byte = 13
    
    ' Moore and McCabe (M & M), variation of John Tukey's method.
    ' TI-83.
    ' Exclude median from odd dataset in dataset for quartile.
    ' L: (Int(n/2)+1)/2
    ' H: n-(Int(n/2)+1)/2
    Const cbytMethodTukeyMM           As Byte = 14
    
    ' Additional variations between Weibull's and Hazen's methods, from
    '   (i-0.000)/(n+1.00)
    ' to
    '   (i-0.500)/(n+0.00)
    '
    ' Variation of Weibull.
    ' L: n(n/4-0)/(n+1)
    ' H: n(3n/4-0)/(n+1)
    Const cbytMethodModWeibull        As Byte = 15
    ' Variation of Blom.
    ' L: n(n/4-3/8)/(n+1/4)
    ' H: n(3n/4-3/8)/(n+1/4)
    Const cbytMethodModBlom           As Byte = 16
    ' Variation of Tukey.
    ' L: n(n/4-1/3)/(n+1/3)
    ' H: n(3n/4-1/3)/(n+1/3)
    Const cbytMethodModTukey          As Byte = 17
    ' Variation of Cunnane.
    ' L: n(n/4-2/5)/(n+1/5)
    ' H: n(3n/4-2/5)/(n+1/5)
    Const cbytMethodModCunnane        As Byte = 18
    ' Variation of Gringorten.
    ' L: n(n/4-0.44)/(n+0.12)
    ' H: n(3n/4-0.44)/(n+0.12)
    Const cbytMethodModGringorten     As Byte = 19
    ' Variation of Hazen.
    ' L: n(n/4-1/2)/n
    ' H: n(3n/4-1/2)/n
    Const cbytMethodModHazen          As Byte = 20
    
    
    ' Define default method to calculate quartiles.
    Const cbytMethodDefault = cbytMethodFreundPerles
        
    Static dbs      As DAO.Database
    Static rst      As DAO.Recordset
    
    Dim strSQL      As String
    Dim lngNumber   As Long
    Dim dblPosition As Double
    Dim lngPosition As Long
    Dim dblInterpol As Double
    Dim dblValueOne As Double
    Dim dblValueTwo As Double
    Dim dblQuartile As Double
    
    ' Use default calculation if choice of calculation is outside range.
    If bytQuartile > 4 Then
      bytQuartile = cbytQuartDefault
    End If
    ' Use default method if choice of method is outside range.
    If bytMethod = 0 Or bytMethod > 20 Then
      bytMethod = cbytMethodDefault
    End If
    
    If dbs Is Nothing Then
      Set dbs = CurrentDb()
    End If

    If Len(strTable) > 0 And Len(strField) > 0 Then
      strSQL = "SELECT [" & strField & "] FROM [" & strTable & "] "
      strSQL = strSQL & "WHERE ([" & strField & "] Is Not Null) "
      If Len(strFilter) > 0 Then
        strSQL = strSQL & "AND (" & strFilter & ") "
      End If
      strSQL = strSQL & "ORDER BY [" & strField & "];"
  
      Set rst = dbs.OpenRecordset(strSQL)
      
      With rst
        If Not .EOF = True Then
          If bytQuartile = cbytQuartMinimum Then
            ' No need to count records.
            lngNumber = 1
          Else
            ' Count records.
            .MoveLast
            lngNumber = .RecordCount
          End If
          Select Case bytQuartile
            Case cbytQuartMinimum
              ' Current record is first record.
              ' Read value of this record.
            Case cbytQuartMaximum
              ' Current record is last record.
              ' Read value of this record.
            Case cbytQuartMedian
              ' Locate position of median.
              dblPosition = (lngNumber + 1) / 2
            Case cbytQuartLow
              Select Case bytMethod
                Case cbytMethodMendenhallSincich
                  dblPosition = -Int(-lngNumber / 4)
                Case cbytMethodAverage
                  dblPosition = (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
                Case cbytMethodNearestInteger
                  dblPosition = Int((lngNumber + 2) / 4)
                Case cbytMethodParzen
                  dblPosition = lngNumber / 4
                Case cbytMethodHazen
                  dblPosition = (lngNumber + 2) / 4
                Case cbytMethodWeibull
                  dblPosition = (lngNumber + 1) / 4
                Case cbytMethodFreundPerles
                  dblPosition = (lngNumber + 3) / 4
                Case cbytMethodMedianPosition
                  dblPosition = (3 * lngNumber + 5) / 12
                Case cbytMethodBernardLevenbach
                  dblPosition = (lngNumber / 4) + 0.4
                Case cbytMethodBlom
                  dblPosition = (4 * lngNumber + 7) / 16
                Case cbytMethodMoore1
                  dblPosition = (lngNumber + 0.5) / 4
                Case cbytMethodMoore2
                  dblPosition = (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
                Case cbytMethodTukey
                  dblPosition = (1 - Int(-lngNumber / 2)) / 2
                Case cbytMethodTukeyMM
                  dblPosition = (Int(lngNumber / 2) + 1) / 2
                Case cbytMethodModWeibull
                  dblPosition = lngNumber * (lngNumber / 4) / (lngNumber + 1)
                Case cbytMethodModBlom
                  dblPosition = lngNumber * (lngNumber / 4 - 3 / 8) / (lngNumber + 1 / 4)
                Case cbytMethodModTukey
                  dblPosition = lngNumber * (lngNumber / 4 - 1 / 3) / (lngNumber + 1 / 3)
                Case cbytMethodModCunnane
                  dblPosition = lngNumber * (lngNumber / 4 - 2 / 5) / (lngNumber + 1 / 5)
                Case cbytMethodModGringorten
                  dblPosition = lngNumber * (lngNumber / 4 - 0.44) / (lngNumber + 0.12)
                Case cbytMethodModHazen
                  dblPosition = lngNumber * (lngNumber / 4 - 1 / 2) / lngNumber
              End Select
            Case cbytQuartHigh
              Select Case bytMethod
                Case cbytMethodMendenhallSincich
                  dblPosition = lngNumber - (-Int(-lngNumber / 4))
                Case cbytMethodAverage
                  dblPosition = lngNumber - (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
                Case cbytMethodNearestInteger
                  dblPosition = lngNumber - Int((lngNumber + 2) / 4)
                Case cbytMethodParzen
                  dblPosition = 3 * lngNumber / 4
                Case cbytMethodHazen
                  dblPosition = 3 * (lngNumber + 2) / 4
                Case cbytMethodWeibull
                  dblPosition = 3 * (lngNumber + 1) / 4
                Case cbytMethodFreundPerles
                  dblPosition = (3 * lngNumber + 1) / 4
                Case cbytMethodMedianPosition
                  dblPosition = (9 * lngNumber + 7) / 12
                Case cbytMethodBernardLevenbach
                  dblPosition = (3 * lngNumber / 4) + 0.6
                Case cbytMethodBlom
                  dblPosition = (12 * lngNumber + 9) / 16
                Case cbytMethodMoore1
                  dblPosition = lngNumber - (lngNumber + 0.5) / 4
                Case cbytMethodMoore2
                  dblPosition = lngNumber - (Int((lngNumber + 1) / 4) + Int(lngNumber / 4)) / 2 + 1
                Case cbytMethodTukey
                  dblPosition = lngNumber - (1 - Int(-lngNumber / 2)) / 2
                Case cbytMethodTukeyMM
                  dblPosition = lngNumber - (Int(lngNumber / 2) + 1) / 2
                Case cbytMethodModWeibull
                  dblPosition = lngNumber * (3 * lngNumber / 4) / (lngNumber + 1)
                Case cbytMethodModBlom
                  dblPosition = lngNumber * (3 * lngNumber / 4 - 3 / 8) / (lngNumber + 1 / 4)
                Case cbytMethodModTukey
                  dblPosition = lngNumber * (3 * lngNumber / 4 - 1 / 3) / (lngNumber + 1 / 3)
                Case cbytMethodModCunnane
                  dblPosition = lngNumber * (3 * lngNumber / 4 - 2 / 5) / (lngNumber + 1 / 5)
                Case cbytMethodModGringorten
                  dblPosition = lngNumber * (3 * lngNumber / 4 - 0.44) / (lngNumber + 0.12)
                Case cbytMethodModHazen
                  dblPosition = lngNumber * (3 * lngNumber / 4 - 1 / 2) / lngNumber
              End Select
          End Select
          Select Case bytQuartile
            Case cbytQuartMinimum, cbytQuartMaximum
              ' Read current row.
            Case Else
              .MoveFirst
              ' Find position of first observation to retrieve.
              ' If lngPosition is 0, then upper position is first record.
              ' If lngPosition is not 0 and position is not an integer, then
              ' read the next observation too.
              lngPosition = Fix(dblPosition)
              dblInterpol = dblPosition - lngPosition
              If lngNumber = 1 Then
                ' Nowhere else to move.
                If dblInterpol < 0 Then
                  ' Prevent values to be created by extrapolation beyond zero from observation one
                  ' for these methods:
                  '   cbytMethodModBlom
                  '   cbytMethodModTukey
                  '   cbytMethodModCunnane
                  '   cbytMethodModGringorten
                  '   cbytMethodModHazen
                  '
                  ' Comment this line out, if reading by extrapolation *is* requested.
                  dblInterpol = 0
                End If
              ElseIf lngPosition > 1 Then
                ' Move to record to read.
                .Move lngPosition - 1
              End If
          End Select
          ' Retrieve value from first observation.
          dblValueOne = .Fields(0).Value
          
          Select Case bytQuartile
            Case cbytQuartMinimum, cbytQuartMaximum
              dblQuartile = dblValueOne
            Case Else
              If dblInterpol = 0 Then
                ' Only one observation to read.
                If lngPosition = 0 Then
                  ' Return 0.
                Else
                  dblQuartile = dblValueOne
                End If
              Else
                If lngPosition = 0 Then
                  ' No first observation to retrieve.
                  dblValueTwo = dblValueOne
                  If dblValueOne > 0 Then
                    ' Use 0 as other observation.
                    dblValueOne = 0
                  Else
                    dblValueOne = 2 * dblValueOne
                  End If
                Else
                  ' Move to next observation.
                  .MoveNext
                  ' Retrieve value from second observation.
                  dblValueTwo = .Fields(0).Value
                End If
                ' For positive values interpolate between 0 and dblValueOne.
                ' For negative values interpolate between 2 * dblValueOne and dblValueOne.
                ' Calculate quartile using linear interpolation.
                dblQuartile = dblValueOne + dblInterpol * CDec(dblValueTwo - dblValueOne)
              End If
          End Select
        End If
        .Close
      End With
    Else
      ' Reset.
      Set rst = Nothing
      Set dbs = Nothing
    End If
      
    ''Set rst = Nothing

  GetQuartile = dblQuartile

End Function

正如您将看到的,它使用静态记录集来加速重复呼叫。