我在名为DataFrame
的pandas df
中有一张表:
+--- -----+------------+-------------+----------+------------+-----------+
|avg_views| avg_orders | max_views |max_orders| min_views |min_orders |
+---------+------------+-------------+----------+------------+-----------+
| 23 | 123 | 135 | 500 | 3 | 1 |
+---------+------------+-------------+----------+------------+-----------+
我现在要寻找的是绘制一个显示我的分组条形图 (平均值,最大值,最小值)一个条形图中的视图和订单。
即在x轴上会有视图和命令以距离分隔 和3条(平均值,最大值,最小值)的视图和类似的订单。
我附上了一个示例条形图图像,只是为了了解条形图的外观。
我从setting spacing between grouped bar plots in matplotlib获取了以下代码,但它对我不起作用:
plt.figure(figsize=(13, 7), dpi=300)
groups = [[23, 135, 3], [123, 500, 1]]
group_labels = ['views', 'orders']
num_items = len(group_labels)
ind = np.arange(num_items)
margin = 0.05
width = (1. - 2. * margin) / num_items
s = plt.subplot(1, 1, 1)
for num, vals in enumerate(groups):
print 'plotting: ', vals
# The position of the xdata must be calculated for each of the two data
# series.
xdata = ind + margin + (num * width)
# Removing the "align=center" feature will left align graphs, which is
# what this method of calculating positions assumes.
gene_rects = plt.bar(xdata, vals, width)
s.set_xticks(ind + 0.5)
s.set_xticklabels(group_labels)
密谋:[23,135,3] ... ValueError:形状不匹配:无法将对象广播为单个形状
答案 0 :(得分:13)
使用pandas:
import pandas as pd
groups = [[23,135,3], [123,500,1]]
group_labels = ['views', 'orders']
# Convert data to pandas DataFrame.
df = pd.DataFrame(groups, index=group_labels).T
# Plot.
pd.concat(
[df.mean().rename('average'), df.min().rename('min'),
df.max().rename('max')],
axis=1).plot.bar()
答案 1 :(得分:5)
您不必只是为了以某种方式绘制数据框就可以修改数据框吗?
使用seaborn!
import seaborn as sns
sns.catplot(x = "x", # x variable name
y = "y", # y variable name
hue = "type", # group variable name
data = df, # dataframe to plot
kind = "bar")