我想使用隐马尔可夫模型(解码问题)预测隐藏状态。数据是分类的。隐藏的状态包括饥饿,休息,运动和电影。观察集包括Food,Home,Outdoor&娱乐和艺术&娱乐。我的程序首先根据观察序列(Baum-Welch算法)训练HMM。然后我做解码(维特比算法)来预测隐藏状态序列。
我的问题是我如何将结果(非负整数)映射到相应的类别,如Hungry或Rest。由于训练算法的非确定性属性,对于相同数据的每次训练,参数是不同的。因此,如果我按照以下代码执行映射,则隐藏状态序列每次都不同。
代码如下:
from __future__ import division
import numpy as np
from hmmlearn import hmm
states = ["Hungry", "Rest", "Exercise", "Movie"]
n_states = len(states)
observations = ["Food", "Home", "Outdoor & Recreation", "Arts & Entertainment"]
# The number in this sequence is the index of observation
category_sequence = [1, 0, 1, 2, 1, 3, 1]
Location = np.array([category_sequence]).T
model = hmm.MultinomialHMM(n_components=n_states).fit(Location)
logprob, result = model.decode(Location)
print "Category:", ", ".join(map(lambda x: observations[x], Location.T[0]))
print "Intent:", ", ".join(map(lambda x: states[x], result))
答案 0 :(得分:3)
这称为标签切换问题。模型的对数似然性在所有状态上求和,因此与特定排序无关。
据我所知,没有处理它的一般方法。您可以尝试的事项包括:
predict
并使用预测将状态索引映射到相应的标签。 更新:一种特殊版本的猜测状态,用于标记贴标签数据的映射。
def guess_labels(hmm, X, labels):
result = [None] * hmm.n_components
for label, y_t in zip(labels, hmm.predict(X)):
assigned = result[y_t]
if assigned is not None:
# XXX clearly for any real data there might be
# (and there will be) conflicts. Here we just blindly
# hope the ``assert`` never fires.
assert assigned == label
else:
result[y_t] = label
return result