我从关于对齐算法的一些细节开始,最后,我问我的问题。如果你知道对齐算法通过开头。
考虑我们有两个字符串,如:
ACCGAATCGA
ACCGGTATTAAC
有一些算法,如:Smith-Waterman或Needleman–Wunsch,它们对齐这两个序列并创建一个矩阵。看看以下部分的结果:
Smith-Waterman Matrix
§ § A C C G A A T C G A
§ 0 0 0 0 0 0 0 0 0 0 0
A 0 4 0 0 0 4 4 0 0 0 4
C 0 0 13 9 4 0 4 3 9 4 0
C 0 0 9 22 17 12 7 3 12 7 4
G 0 0 4 17 28 23 18 13 8 18 13
G 0 0 0 12 23 28 23 18 13 14 18
T 0 0 0 7 18 23 28 28 23 18 14
A 0 4 0 2 13 22 27 28 28 23 22
T 0 0 3 0 8 17 22 32 27 26 23
T 0 0 0 2 3 12 17 27 31 26 26
A 0 4 0 0 2 7 16 22 27 31 30
A 0 4 4 0 0 6 11 17 22 27 35
C 0 0 13 13 8 3 6 12 26 22 30
Optimal Alignments
A C C G A - A T C G A
A C C G G A A T T A A
我的问题很简单,但也许答案并不容易。我想使用一组角色作为单个角色,如:[A0][C0][A1][B1]
。但在这些算法中,我们必须使用单个字符。我们怎样才能做到这一点?
P.S。考虑一下我们有这个序列:#read #write #add #write
。然后我把它转换成类似的东西:#read到A .... #write to B .... #add to C.然后我的序列变为:ABCB
。但是我有许多以#
开头的不同词汇。并且ASCII表不足以转换所有这些。然后我需要更多的角色。唯一的方法是为每个单词使用[A0] ... [Z9]
之类的东西。或使用数字。
P.S:Smith {Waterman的一些示例代码存在于此link
中 P.S:有another post需要类似的东西,但我想要的是不同的。在这个问题中,我们有一组字符以[
开头,以]
结尾。并且不需要使用ee
之类的语义等于i
。
答案 0 :(得分:2)
我修改了Smith-Waterman和Needleman-Wunsch算法的this Python implementation(GPL版本3许可),以支持具有多个字符组的序列:
#This software is a free software. Thus, it is licensed under GNU General Public License.
#Python implementation to Smith-Waterman Algorithm for Homework 1 of Bioinformatics class.
#Forrest Bao, Sept. 26 <http://fsbao.net> <forrest.bao aT gmail.com>
# zeros() was origianlly from NumPy.
# This version is implemented by alevchuk 2011-04-10
def zeros(shape):
retval = []
for x in range(shape[0]):
retval.append([])
for y in range(shape[1]):
retval[-1].append(0)
return retval
match_award = 10
mismatch_penalty = -5
gap_penalty = -5 # both for opening and extanding
gap = '----' # should be as long as your group of characters
space = ' ' # should be as long as your group of characters
def match_score(alpha, beta):
if alpha == beta:
return match_award
elif alpha == gap or beta == gap:
return gap_penalty
else:
return mismatch_penalty
def finalize(align1, align2):
align1 = align1[::-1] #reverse sequence 1
align2 = align2[::-1] #reverse sequence 2
i,j = 0,0
#calcuate identity, score and aligned sequeces
symbol = []
found = 0
score = 0
identity = 0
for i in range(0,len(align1)):
# if two AAs are the same, then output the letter
if align1[i] == align2[i]:
symbol.append(align1[i])
identity = identity + 1
score += match_score(align1[i], align2[i])
# if they are not identical and none of them is gap
elif align1[i] != align2[i] and align1[i] != gap and align2[i] != gap:
score += match_score(align1[i], align2[i])
symbol.append(space)
found = 0
#if one of them is a gap, output a space
elif align1[i] == gap or align2[i] == gap:
symbol.append(space)
score += gap_penalty
identity = float(identity) / len(align1) * 100
print 'Identity =', "%3.3f" % identity, 'percent'
print 'Score =', score
print ''.join(align1)
# print ''.join(symbol)
print ''.join(align2)
def needle(seq1, seq2):
m, n = len(seq1), len(seq2) # length of two sequences
# Generate DP table and traceback path pointer matrix
score = zeros((m+1, n+1)) # the DP table
# Calculate DP table
for i in range(0, m + 1):
score[i][0] = gap_penalty * i
for j in range(0, n + 1):
score[0][j] = gap_penalty * j
for i in range(1, m + 1):
for j in range(1, n + 1):
match = score[i - 1][j - 1] + match_score(seq1[i-1], seq2[j-1])
delete = score[i - 1][j] + gap_penalty
insert = score[i][j - 1] + gap_penalty
score[i][j] = max(match, delete, insert)
# Traceback and compute the alignment
align1, align2 = [], []
i,j = m,n # start from the bottom right cell
while i > 0 and j > 0: # end toching the top or the left edge
score_current = score[i][j]
score_diagonal = score[i-1][j-1]
score_up = score[i][j-1]
score_left = score[i-1][j]
if score_current == score_diagonal + match_score(seq1[i-1], seq2[j-1]):
align1.append(seq1[i-1])
align2.append(seq2[j-1])
i -= 1
j -= 1
elif score_current == score_left + gap_penalty:
align1.append(seq1[i-1])
align2.append(gap)
i -= 1
elif score_current == score_up + gap_penalty:
align1.append(gap)
align2.append(seq2[j-1])
j -= 1
# Finish tracing up to the top left cell
while i > 0:
align1.append(seq1[i-1])
align2.append(gap)
i -= 1
while j > 0:
align1.append(gap)
align2.append(seq2[j-1])
j -= 1
finalize(align1, align2)
def water(seq1, seq2):
m, n = len(seq1), len(seq2) # length of two sequences
# Generate DP table and traceback path pointer matrix
score = zeros((m+1, n+1)) # the DP table
pointer = zeros((m+1, n+1)) # to store the traceback path
max_score = 0 # initial maximum score in DP table
# Calculate DP table and mark pointers
for i in range(1, m + 1):
for j in range(1, n + 1):
score_diagonal = score[i-1][j-1] + match_score(seq1[i-1], seq2[j-1])
score_up = score[i][j-1] + gap_penalty
score_left = score[i-1][j] + gap_penalty
score[i][j] = max(0,score_left, score_up, score_diagonal)
if score[i][j] == 0:
pointer[i][j] = 0 # 0 means end of the path
if score[i][j] == score_left:
pointer[i][j] = 1 # 1 means trace up
if score[i][j] == score_up:
pointer[i][j] = 2 # 2 means trace left
if score[i][j] == score_diagonal:
pointer[i][j] = 3 # 3 means trace diagonal
if score[i][j] >= max_score:
max_i = i
max_j = j
max_score = score[i][j];
align1, align2 = [], [] # initial sequences
i,j = max_i,max_j # indices of path starting point
#traceback, follow pointers
while pointer[i][j] != 0:
if pointer[i][j] == 3:
align1.append(seq1[i-1])
align2.append(seq2[j-1])
i -= 1
j -= 1
elif pointer[i][j] == 2:
align1.append(gap)
align2.append(seq2[j-1])
j -= 1
elif pointer[i][j] == 1:
align1.append(seq1[i-1])
align2.append(gap)
i -= 1
finalize(align1, align2)
如果我们使用以下输入运行它:
seq1 = ['[A0]', '[C0]', '[A1]', '[B1]']
seq2 = ['[A0]', '[A1]', '[B1]', '[C1]']
print "Needleman-Wunsch"
needle(seq1, seq2)
print
print "Smith-Waterman"
water(seq1, seq2)
我们得到了这个输出:
Needleman-Wunsch
Identity = 60.000 percent
Score = 20
[A0][C0][A1][B1]----
[A0]----[A1][B1][C1]
Smith-Waterman
Identity = 75.000 percent
Score = 25
[A0][C0][A1][B1]
[A0]----[A1][B1]
有关我所做的具体更改,请参阅:this GitHub repository。
答案 1 :(得分:1)
想象一下,我们有一个包含字母序列的日志文件。就像你说的那样,我将序列转换为A0A1...
。例如,如果存在类似#read #write #add #write
的序列,则会将其转换为A0A1A2A1
。每次,我读两个字符并比较它们,但保持得分矩阵像以前一样。这是我在C#中用于smith-waterman字符串对齐的代码
请注意,Cell
是用户定义的类。
private void alignment()
{
string strSeq1;
string strSeq2;
string strTemp1;
string strTemp2;
scoreMatrix = new int[Log.Length, Log.Length];
// Lists That Holds Alignments
List<char> SeqAlign1 = new List<char>();
List<char> SeqAlign2 = new List<char>();
for (int i = 0; i<Log.Length; i++ )
{
for (int j=i+1 ; j<Log.Length; j++)
{
strSeq1 = "--" + logFile.Sequence(i);
strSeq2 = "--" + logFile.Sequence(j);
//prepare Matrix for Computing optimal alignment
Cell[,] Matrix = DynamicProgramming.Intialization_Step(strSeq1, strSeq2, intSim, intNonsim, intGap);
// Trace back matrix from end cell that contains max score
DynamicProgramming.Traceback_Step(Matrix, strSeq1, strSeq2, SeqAlign1, SeqAlign2);
this.scoreMatrix[i, j] = DynamicProgramming.intMaxScore;
strTemp1 = Reverse(string.Join("", SeqAlign1));
strTemp2 = Reverse(string.Join("", SeqAlign2));
}
}
}
class DynamicProgramming
{
public static Cell[,] Intialization_Step(string Seq1, string Seq2,int Sim,int NonSimilar,int Gap)
{
int M = Seq1.Length / 2 ;//Length+1//-AAA //Changed: /2
int N = Seq2.Length / 2 ;//Length+1//-AAA
Cell[,] Matrix = new Cell[N, M];
//Intialize the first Row With Gap Penality Equal To Zero
for (int i = 0; i < Matrix.GetLength(1); i++)
{
Matrix[0, i] = new Cell(0, i, 0);
}
//Intialize the first Column With Gap Penality Equal To Zero
for (int i = 0; i < Matrix.GetLength(0); i++)
{
Matrix[i, 0] = new Cell(i, 0, 0);
}
// Fill Matrix with each cell has a value result from method Get_Max
for (int j = 1; j < Matrix.GetLength(0); j++)
{
for (int i = 1; i < Matrix.GetLength(1); i++)
{
Matrix[j, i] = Get_Max(i, j, Seq1, Seq2, Matrix,Sim,NonSimilar,Gap);
}
}
return Matrix;
}
public static Cell Get_Max(int i, int j, string Seq1, string Seq2, Cell[,] Matrix,int Similar,int NonSimilar,int GapPenality)
{
Cell Temp = new Cell();
int intDiagonal_score;
int intUp_Score;
int intLeft_Score;
int Gap = GapPenality;
//string temp1, temp2;
//temp1 = Seq1[i*2].ToString() + Seq1[i*2 + 1]; temp2 = Seq2[j*2] + Seq2[j*2 + 1].ToString();
if ((Seq1[i * 2] + Seq1[i * 2 + 1]) == (Seq2[j * 2] + Seq2[j * 2 + 1])) //Changed: +
{
intDiagonal_score = Matrix[j - 1, i - 1].CellScore + Similar;
}
else
{
intDiagonal_score = Matrix[j - 1, i - 1].CellScore + NonSimilar;
}
//Calculate gap score
intUp_Score = Matrix[j - 1, i].CellScore + GapPenality;
intLeft_Score = Matrix[j, i - 1].CellScore + GapPenality;
if (intDiagonal_score<=0 && intUp_Score<=0 && intLeft_Score <= 0)
{
return Temp = new Cell(j, i, 0);
}
if (intDiagonal_score >= intUp_Score)
{
if (intDiagonal_score>= intLeft_Score)
{
Temp = new Cell(j, i, intDiagonal_score, Matrix[j - 1, i - 1], Cell.PrevcellType.Diagonal);
}
else
{
Temp = new Cell(j, i, intDiagonal_score, Matrix[j , i - 1], Cell.PrevcellType.Left);
}
}
else
{
if (intUp_Score >= intLeft_Score)
{
Temp = new Cell(j, i, intDiagonal_score, Matrix[j - 1, i], Cell.PrevcellType.Above);
}
else
{
Temp = new Cell(j, i, intDiagonal_score, Matrix[j , i - 1], Cell.PrevcellType.Left);
}
}
if (MaxScore.CellScore <= Temp.CellScore)
{
MaxScore = Temp;
}
return Temp;
}
public static void Traceback_Step(Cell[,] Matrix, string Sq1, string Sq2, List<char> Seq1, List<char> Seq2)
{
intMaxScore = MaxScore.CellScore;
while (MaxScore.CellPointer != null)
{
if (MaxScore.Type == Cell.PrevcellType.Diagonal)
{
Seq1.Add(Sq1[MaxScore.CellColumn * 2 + 1]); //Changed: All of the following lines with *2 and +1
Seq1.Add(Sq1[MaxScore.CellColumn * 2]);
Seq2.Add(Sq2[MaxScore.CellRow * 2 + 1]);
Seq2.Add(Sq2[MaxScore.CellRow * 2]);
}
if (MaxScore.Type == Cell.PrevcellType.Left)
{
Seq1.Add(Sq1[MaxScore.CellColumn * 2 + 1]);
Seq1.Add(Sq1[MaxScore.CellColumn * 2]);
Seq2.Add('-');
}
if (MaxScore.Type == Cell.PrevcellType.Above)
{
Seq1.Add('-');
Seq2.Add(Sq2[MaxScore.CellRow * 2 + 1]);
Seq2.Add(Sq2[MaxScore.CellRow * 2]);
}
MaxScore = MaxScore.CellPointer;
}
}
}