我尝试使用scipy函数fsolve
计算函数的根,但错误会持续标记:
TypeError: 'numpy.array' object is not callable
我认为将方程式定义为函数可能更容易,但我已经尝试了几次但没有用。
代码:
import scipy
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
# Constants
wavelength = 0.6328
ncore = 1.462420
nclad = 1.457420
a = 8.335
# Mode Order
l = 0
# Mode parameters
V = (2 * np.pi * a / wavelength) * np.sqrt(ncore**2 - nclad**2)
U = np.arange(0, V, 0.01)
W = np.sqrt(V**2-U**2)
func = U * scipy.special.jv(l+1, U) / scipy.special.jv(l, U) - W * scipy.special.kv(l+1, W) / scipy.special.kv(l, W)
from scipy.optimize import fsolve
x = fsolve(func,0)
print x
堆栈跟踪:
Traceback (most recent call last):
File "<ipython-input-52-081a9cc9c0ea>", line 1, in <module>
runfile('/home/luke/Documents/PythonPrograms/ModeSolver_StepIndex/ModeSolver_StepIndex.py', wdir='/home/luke/Documents/PythonPrograms/ModeSolver_StepIndex')
File "/usr/lib/python2.7/site-packages/spyderlib/widgets/externalshell/sitecustomize.py", line 580, in runfile
execfile(filename, namespace)
File "/home/luke/Documents/PythonPrograms/ModeSolver_StepIndex/ModeSolver_StepIndex.py", line 52, in <module>
x = fsolve(func,0)
File "/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py", line 140, in fsolve
res = _root_hybr(func, x0, args, jac=fprime, **options)
File "/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py", line 197, in _root_hybr
shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,))
File "/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py", line 20, in _check_func
res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
TypeError: 'numpy.ndarray' object is not callable
答案 0 :(得分:1)
这是因为fsolve将一个函数作为参数。 试试这个,注意你仍然会遇到一些运行时错误,你必须检查你是否正确构造了你的func返回,我会留下你的想法。
import scipy
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
# Constants
wavelength = 0.6328
ncore = 1.462420
nclad = 1.457420
a = 8.335
# Mode Order
# l = 0
# Mode parameters
V = (2 * np.pi * a / wavelength) * np.sqrt(ncore**2 - nclad**2)
U = np.arange(0, V, 0.01)
W = np.sqrt(V**2-U**2)
def func(l):
return U * scipy.special.jv(l+1, U) / scipy.special.jv(l, U) - W * scipy.special.kv(l+1, W) / scipy.special.kv(l, W)
from scipy.optimize import fsolve
x = fsolve(func,0)
print x
答案 1 :(得分:0)
您需要将函数传递给fsolve
而不是array
。
如果我只打印你的功能:
func
array([ -1.04882076e+01, -1.04881526e+01, -1.04879876e+01,
-1.04877125e+01, -1.04873274e+01, -1.04868321e+01,
-1.04862266e+01, -1.04855109e+01, -1.04846847e+01,
-1.04837481e+01, -1.04827008e+01, -1.04815428e+01,
-1.04802738e+01, -1.04788938e+01, -1.04774024e+01,
-1.04757996e+01, -1.04740850e+01, -1.04722585e+01,
-1.04703198e+01, -1.04682686e+01, -1.04661046e+01,
-1.04638275e+01, -1.04614371e+01, -1.04589330e+01,
-1.04563147e+01, -1.04535820e+01, -1.04507345e+01,
-1.04477718e+01, -1.04446934e+01, -1.04414988e+01,
... ]
这是一个数组,但你想要一个函数。这样的事情有效:
def linear(x):
return 2*x+4
fsolve(linear, 0)
不知道如何定义你的功能。