在pandas中使用args应用函数

时间:2015-10-28 13:11:31

标签: python pandas dataframe

我正在尝试查找Date是否属于数据框中的PromoInterval

print dset1

        Store   Date    PromoInterval
1760    2   2013-05-04  Jan,Apr,Jul,Oct
1761    2   2013-05-03  Jan,Apr,Jul,Oct
1762    2   2013-05-02  Jan,Apr,Jul,Oct
1763    2   2013-05-01  Jan,Apr,Jul,Oct
1764    2   2013-04-30  Jan,Apr,Jul,Oct

def func(a,b):
    y = b.split(",")
    z = {1:'Jan',2:'Feb',3:'Mar', 4:'Apr',5:'May',6:'Jun',7:'Jul',8:'Aug',9:'Sep',
        10:'Oct',11:'Nov',12:'Dec'}
    return (z[a] in y)

dset1.apply(func, axis=1, args = (dset1['Date'].dt.month, dset1['PromoInterval']) )

触及以下错误:

  

dset1.apply(func,axis = 1,args =(dset1 ['Date']。dt.month,> dset1 ['PromoInterval']))       ('func()正好接受2个参数(3个给定)',未发生在索引1760')

数据集:

{'Date': {1760: Timestamp('2013-05-04 00:00:00'),
  1761: Timestamp('2013-05-03 00:00:00'),
  1762: Timestamp('2013-05-02 00:00:00'),
  1763: Timestamp('2013-05-01 00:00:00'),
  1764: Timestamp('2013-04-30 00:00:00')},
 'PromoInterval': {1760: 'Jan,Apr,Jul,Oct',
  1761: 'Jan,Apr,Jul,Oct',
  1762: 'Jan,Apr,Jul,Oct',
  1763: 'Jan,Apr,Jul,Oct',
  1764: 'Jan,Apr,Jul,Oct'},
 'Store': {1760: 2, 1761: 2, 1762: 2, 1763: 2, 1764: 2}}

3 个答案:

答案 0 :(得分:3)

我首先使用'Date'列上的lambda函数格式化月份的文本字符串:

df['Month'] = df['Date'].apply(lambda x: x.strftime('%b'))

然后我会在axis=1上触发一个lambda函数,这意味着它在数据帧上的x轴上运行。在这里,我只是检查'Month'是否在'PromoInterval'

df[['PromoInterval', 'Month']].apply(lambda x: x[1] in x[0], axis=1)

1760    False
1761    False
1762    False
1763    False
1764     True
dtype: bool

答案 1 :(得分:2)

解决方案是让你的函数占用一行而不是元素:

def func(row):
    y = row[2].split(",")
    z = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun',
        7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'}
    return (z[row[1].month] in y)

然后你可以直接申请:

df['Result'] = df.apply(func, axis=1)

注意:该函数使用.month,因为我使用pd.to_datetime将日期转换为datetime对象。

答案 2 :(得分:1)

实际上这是因为该函数需要3个参数,而不是2个

def func(df,a,b):
    print('---df----')
    print(df)
    print('---a---')
    print(a)
    print('---b---')
    print(b)
    y = b.split(",")
    z = {1:'Jan',2:'Feb',3:'Mar', 4:'Apr',5:'May',6:'Jun',7:'Jul',8:'Aug',9:'Sep',
        10:'Oct',11:'Nov',12:'Dec'}
    return (z[a] in y)

In [98]:
dset1.apply(func, axis=1, args = (dset1['Date'].dt.month, dset1['PromoInterval']) )

In [99]:

---df----
Store                              2
Date             2013-05-04 00:00:00
PromoInterval        Jan,Apr,Jul,Oct
Name: 0, dtype: object
---a---
0    5
1    5
2    5
3    5
4    4
dtype: int64
---b---
0    Jan,Apr,Jul,Oct
1    Jan,Apr,Jul,Oct
2    Jan,Apr,Jul,Oct
3    Jan,Apr,Jul,Oct
4    Jan,Apr,Jul,Oct
Name: PromoInterval, dtype: object

相反,您可以执行以下操作

In [94]:

def func(df):
    y = df['PromoInterval'].split(",")
    z = {1:'Jan',2:'Feb',3:'Mar', 4:'Apr',5:'May',6:'Jun',7:'Jul',8:'Aug',9:'Sep',
    10:'Oct',11:'Nov',12:'Dec'}
    return (z[df.Date.month] in y)

In [95]:
dset1.apply(func, axis=1)



Out[112]:
0    False
1    False
2    False
3    False
4     True
dtype: bool