我在R中的数据框中有一列,其值为“-1”,“0”,“1”。我想分别用“no”,“maybe”和“yes”替换这些值。我将使用sub。
来做到这一点我可以写一个条件函数,然后代码:
df[col] <- lapply(df[col], conditional_function_substitution)
我也可以一次做一个替换(三个中的第一个示例):
df[col] <- lapply(df[col], sub, pattern = '-1', replacement = "no")
我想知道它是否可以在一行中完成?类似的东西:
df[col] <- lapply(df[col], sub, pattern = c('-1','0','1'), replacement = c('no','maybe','yes')
感谢您的见解!
答案 0 :(得分:14)
通过将2添加到-1,0和1,您可以将索引转换为所需结果的向量:
c("no", "maybe", "yes")[dat + 2]
# [1] "no" "yes" "maybe" "yes" "yes" "no"
相关选项可以使用match
函数来计算索引:
c("no", "maybe", "yes")[match(dat, -1:1)]
# [1] "no" "yes" "maybe" "yes" "yes" "no"
或者,您可以使用命名向量进行重新编码:
unname(c("-1"="no", "0"="maybe", "1"="yes")[as.character(dat)])
# [1] "no" "yes" "maybe" "yes" "yes" "no"
您还可以使用嵌套的ifelse
:
ifelse(dat == -1, "no", ifelse(dat == 0, "maybe", "yes"))
# [1] "no" "yes" "maybe" "yes" "yes" "no"
如果您不介意加载新软件包,Recode
软件包中的car
函数会执行此操作:
library(car)
Recode(dat, "-1='no'; 0='maybe'; 1='yes'")
# [1] "no" "yes" "maybe" "yes" "yes" "no"
数据强>:
dat <- c(-1, 1, 0, 1, 1, -1)
请注意,如果将dat
存储为字符串,则除第一个以外的所有内容都有效;在第一个中你需要使用as.numeric(dat)
。
如果代码清晰度是您的主要目标,那么您应该选择一个您最容易理解的内容 - 我个人会选择第二个或最后一个,但这是个人偏好。
如果感兴趣的是代码速度,那么您可以对解决方案进行基准测试。这是我提出的五个选项的基准,也包括目前作为其他答案发布的另外两个解决方案,以长度为100k的随机向量为基准:
set.seed(144)
dat <- sample(c(-1, 0, 1), replace=TRUE, 100000)
opt1 <- function(dat) c("no", "maybe", "yes")[dat + 2]
opt2 <- function(dat) c("no", "maybe", "yes")[match(dat, -1:1)]
opt3 <- function(dat) unname(c("-1"="no", "0"="maybe", "1"="yes")[as.character(dat)])
opt4 <- function(dat) ifelse(dat == -1, "no", ifelse(dat == 0, "maybe", "yes"))
opt5 <- function(dat) Recode(dat, "-1='no'; 0='maybe'; 1='yes'")
AnandaMahto <- function(dat) factor(dat, levels = c(-1, 0, 1), labels = c("no", "maybe", "yes"))
hrbrmstr <- function(dat) sapply(as.character(dat), switch, `-1`="no", `0`="maybe", `1`="yes", USE.NAMES=FALSE)
library(microbenchmark)
microbenchmark(opt1(dat), opt2(dat), opt3(dat), opt4(dat), opt5(dat), AnandaMahto(dat), hrbrmstr(dat))
# Unit: milliseconds
# expr min lq mean median uq max neval
# opt1(dat) 1.513500 2.553022 2.763685 2.656010 2.837673 4.384149 100
# opt2(dat) 2.153438 3.013502 3.251850 3.117058 3.269230 5.851234 100
# opt3(dat) 59.716271 61.890470 64.978685 62.509046 63.723048 144.708757 100
# opt4(dat) 62.934734 64.715815 71.181477 65.652195 71.123384 123.840577 100
# opt5(dat) 82.976441 84.849147 89.071808 85.752429 88.473162 155.347273 100
# AnandaMahto(dat) 57.267227 58.643889 60.508402 59.065642 60.368913 80.852157 100
# hrbrmstr(dat) 137.883307 148.626496 158.051220 153.441243 162.594752 228.271336 100
前两个选项似乎比任何其他选项快一个数量级,但要么矢量必须非常大,要么你需要多次重复操作这有所作为。
正如@AnandaMahto所指出的,如果我们有字符输入而不是数字输入,这些结果在质量上是不同的:
set.seed(144)
dat <- sample(c("-1", "0", "1"), replace=TRUE, 100000)
opt1 <- function(dat) c("no", "maybe", "yes")[as.numeric(dat) + 2]
opt2 <- function(dat) c("no", "maybe", "yes")[match(dat, -1:1)]
opt3 <- function(dat) unname(c("-1"="no", "0"="maybe", "1"="yes")[as.character(dat)])
opt4 <- function(dat) ifelse(dat == -1, "no", ifelse(dat == 0, "maybe", "yes"))
opt5 <- function(dat) Recode(dat, "-1='no'; 0='maybe'; 1='yes'")
AnandaMahto <- function(dat) factor(dat, levels = c(-1, 0, 1), labels = c("no", "maybe", "yes"))
hrbrmstr <- function(dat) sapply(dat, switch, `-1`="no", `0`="maybe", `1`="yes", USE.NAMES=FALSE)
library(microbenchmark)
microbenchmark(opt1(dat), opt2(dat), opt3(dat), opt4(dat), opt5(dat), AnandaMahto(dat), hrbrmstr(dat))
# Unit: milliseconds
# expr min lq mean median uq max neval
# opt1(dat) 8.397194 9.519075 10.784108 9.693706 10.163203 55.78417 100
# opt2(dat) 2.281438 3.091418 4.231162 3.210794 3.436038 49.39879 100
# opt3(dat) 3.606863 5.481115 6.466393 5.720282 6.344651 48.47924 100
# opt4(dat) 66.819638 69.996704 74.596960 71.290522 73.404043 127.52415 100
# opt5(dat) 32.897019 35.701401 38.488489 36.336489 38.950272 88.20915 100
# AnandaMahto(dat) 1.329443 2.114504 2.824306 2.275736 2.493907 46.19333 100
# hrbrmstr(dat) 81.898572 91.043729 154.331766 100.006203 141.425717 1594.17447 100
现在,@ AnandaMahto提出的factor
解决方案是最快的,然后使用match
进行矢量索引并命名向量查找。同样,所有运行时都足够快,你需要一个大的向量或许多运行来解决这个问题。
答案 1 :(得分:8)
factor
通常用于此类任务,并导致一些非常易读的代码:
vec <- c(0, 1, -1, -1, 1, 0)
vec
# [1] 0 1 -1 -1 1 0
factor(vec, levels = c(-1, 0, 1), labels = c("no", "maybe", "yes"))
# [1] maybe yes no no yes maybe
# Levels: no maybe yes
如果您只想要字符输出,请将其包装在as.character
。
如果列值已经是字符串,您只需修改levels
中的factor
参数即可使用as.character
:
vec2 <- as.character(c(0, 1, -1, -1, 1, 0))
vec2
# [1] "0" "1" "-1" "-1" "1" "0"
factor(vec2, levels = as.character(c(-1, 0, 1)), labels = c("no", "maybe", "yes"))
# [1] maybe yes no no yes maybe
# Levels: no maybe yes
答案 2 :(得分:3)
这也可能是switch
的邪恶应用程序:
set.seed(1492)
thing <- sample(c(-1, 0, 1), 100, replace=TRUE)
sapply(as.character(thing), switch, `-1`="no", `0`="maybe", `1`="yes", USE.NAMES=FALSE))
如果它们实际上已经是字符,则可以不用as.character()
位。
注意:我不一定会推荐这个,只是展示所有可能的方式(这更像是ifelse
段传递的错误方式。
IMO factor
是可行的方法。