有没有人听说任何与R的dist{stats}
功能相同的包或功能创建了
距离矩阵,通过使用指定的距离度量来计算数据矩阵行之间的距离,
但是将一个sprase矩阵作为输入?
我的data.frame(名为dataCluster
)有dims:7000 X 10000,几乎99%稀疏。在非稀疏的常规形式中,此功能似乎不会停止工作......
h1 <- hclust( dist( dataCluster ) , method = "complete" )
类似的问题没有答案: Sparse Matrix as input to Hierarchical clustering in R
答案 0 :(得分:5)
它接受Matrix
包中的稀疏矩阵(文档中不清楚),也可以跨距传输,输出Matrix
和dist
个对象等。< / p>
默认距离度量为'cosine'
,因此如果需要,请务必指定method = 'euclidean'
。
答案 1 :(得分:1)
**更新:**实际上,您可以轻松完成qlcMatrix的操作:
sparse.cos <- function(x, y = NULL, drop = TRUE){
if(!is.null(y)){
if(class(x) != "dgCMatrix" || class(y) != "dgCMatrix") stop ("class(x) or class(y) != dgCMatrix")
if(drop == TRUE) colnames(x) <- rownames(x) <- colnames(y) <- rownames(y) <- NULL
crossprod(
tcrossprod(
x,
Diagonal(x = as.vector(crossprod(x ^ 2, rep(1, x@Dim[1]))) ^ -0.5)
),
tcrossprod(
y,
Diagonal(x = as.vector(crossprod(y ^ 2, rep(1, x@Dim[1]))) ^ -0.5))
)
)
} else {
if(class(x) != "dgCMatrix") stop ("class(x) != dgCMatrix")
if(drop == TRUE) colnames(x) <- rownames(X) <- NULL
crossprod(
tcrossprod(
x,
Diagonal(x = as.vector(crossprod(x ^ 2, rep(1, nrow(x)))) ^ -0.5))
)
}
}
我发现上述内容与qlcMatrix::cosSparse
之间的性能没有显着差异。
qlcMatrix::cosSparse
比wordspace::dist.matrix
快。
在稀疏度不同(稀疏度为10%,50%,90%或99%)的宽矩阵(1000 x 5000)上,wordspace::dist.matrix
与qlcMatrix::cosSparse
的性能计算得出1000 x 1000相似性:
# M1 is 10% sparse, M99 is 99% sparse
set.seed(123)
M10 <- rsparsematrix(5000, 1000, density = 1)
M50 <- rsparsematrix(5000, 1000, density = 0.5)
M90 <- rsparsematrix(5000, 1000, density = 0.1)
M99 <- rsparsematrix(5000, 1000, density = 0.01)
tM10 <- t(M10)
tM50 <- t(M50)
tM90 <- t(M90)
tM99 <- t(M99)
benchmark(
"cosSparse: 10% sparse" = cosSparse(M10),
"cosSparse: 50% sparse" = cosSparse(M50),
"cosSparse: 90% sparse" = cosSparse(M90),
"cosSparse: 99% sparse" = cosSparse(M99),
"wordspace: 10% sparse" = dist.matrix(tM10, byrow = TRUE),
"wordspace: 50% sparse" = dist.matrix(tM50, byrow = TRUE),
"wordspace: 90% sparse" = dist.matrix(tM90, byrow = TRUE),
"wordspace: 99% sparse" = dist.matrix(tM99, byrow = TRUE),
replications = 2, columns = c("test", "elapsed", "relative"))
这两个函数相当可比,字空间在稀疏度较低时略有领先,但在稀疏度绝对不高:
test elapsed relative
1 cosSparse: 10% sparse 15.83 527.667
2 cosSparse: 50% sparse 4.72 157.333
3 cosSparse: 90% sparse 0.31 10.333
4 cosSparse: 99% sparse 0.03 1.000
5 wordspace: 10% sparse 15.23 507.667
6 wordspace: 50% sparse 4.28 142.667
7 wordspace: 90% sparse 0.36 12.000
8 wordspace: 99% sparse 0.09 3.000
如果我们翻转计算以计算5000 x 5000矩阵,则:
benchmark(
"cosSparse: 50% sparse" = cosSparse(tM50),
"cosSparse: 90% sparse" = cosSparse(tM90),
"cosSparse: 99% sparse" = cosSparse(tM99),
"wordspace: 50% sparse" = dist.matrix(M50, byrow = TRUE),
"wordspace: 90% sparse" = dist.matrix(M90, byrow = TRUE),
"wordspace: 99% sparse" = dist.matrix(M99, byrow = TRUE),
replications = 1, columns = c("test", "elapsed", "relative"))
现在cosSparse的竞争优势变得非常明显:
test elapsed relative
1 cosSparse: 50% sparse 10.58 151.143
2 cosSparse: 90% sparse 1.44 20.571
3 cosSparse: 99% sparse 0.07 1.000
4 wordspace: 50% sparse 11.41 163.000
5 wordspace: 90% sparse 2.39 34.143
6 wordspace: 99% sparse 0.64 9.143
在稀疏度为50%时,效率的变化不是很大,但在稀疏度为90%时,字空间慢了1.6倍,而稀疏度为99%时,字空间慢了近10倍!
将此性能与方矩阵进行比较:
M50.square <- rsparsematrix(1000, 1000, density = 0.5)
tM50.square <- t(M50.square)
M90.square <- rsparsematrix(1000, 1000, density = 0.1)
tM90.square <- t(M90.square)
benchmark(
"cosSparse: square, 50% sparse" = cosSparse(M50.square),
"wordspace: square, 50% sparse" = dist.matrix(tM50.square, byrow = TRUE),
"cosSparse: square, 90% sparse" = cosSparse(M90.square),
"wordspace: square, 90% sparse" = dist.matrix(tM90.square, byrow = TRUE),
replications = 5, columns = c("test", "elapsed", "relative"))
cosSparse在50%的稀疏度下都快一点,在90%的稀疏度下快两倍!
test elapsed relative
1 cosSparse: square, 50% sparse 2.12 9.217
3 cosSparse: square, 90% sparse 0.23 1.000
2 wordspace: square, 50% sparse 2.15 9.348
4 wordspace: square, 90% sparse 0.40 1.739
请注意,wordspace::dist.matrix
比qlcMatrix::cosSparse
拥有更多的边缘大小写检查,并且还允许通过R中的openmp
进行并行化。此外,wordspace::dist.matrix
支持欧几里得距离和雅卡德距离度量这些要慢得多。该软件包还内置了许多其他方便的功能。
也就是说,如果您只需要余弦相似度,并且矩阵的稀疏度大于50%,并且计算的比较高,则cosSparse
应该是首选工具。