我想运行逻辑回归的因变量(在我的数据集中它是:dat $ admit)包含所有可用变量,对和三元组(3个独立变量),每个回归具有不同的独立变量vs因变量。我想回来的结果是连续的每个回归总结的列表:coeff,p值,AUC,CI 95%。使用下面提交的数据集应该有7个回归:
dat$admit vs dat$female
dat$admit vs dat$apcalc
dat$admit vs dat$num
dat$admit vs dat$female + dat$apcalc
dat$admit vs dat$female + dat$num
dat$admit vs dat$apcalc + dat$num
dat$admit vs dat$female + dat$apcalc + dat$num
以下是一个示例数据集(其中dat $ admit是逻辑回归因变量):
dat <- read.table(text = " female apcalc admit num
0 0 0 7
0 0 1 1
0 1 0 3
0 1 1 7
1 0 0 5
1 0 1 1
1 1 0 0
1 1 1 6",header = TRUE)
根据@marek评论,输出应该是这样的(仅限女性,女性和apcalc): #Crintercept估计P值(截距)P值(估计值)AUC #female 0.000000e + 00 0.000000e + 00 1 1 0.5
有一个很好的代码@David Arenburg写的产生统计数据,但没有模型对和三重奏的创建,所以我想知道如何添加模型创建。 这是David Arenburg的代码吗?
library(caTools)
ResFunc <- function(x) {
temp <- glm(reformulate(x,response="admit"), data=dat,family=binomial)
c(summary(temp)$coefficients[,1],
summary(temp)$coefficients[,4],
colAUC(predict(temp, type = "response"), dat$admit))
}
temp <- as.data.frame(t(sapply(setdiff(names(dat),"admit"), ResFunc)))
colnames(temp) <- c("Intercept", "Estimate", "P-Value (Intercept)", "P-Value (Estimate)", "AUC")
temp
# Intercept Estimate P-Value (Intercept) P-Value (Estimate) AUC
# female 0.000000e+00 0.000000e+00 1 1 0.5
# apcalc 0.000000e+00 0.000000e+00 1 1 0.5
# num 5.177403e-16 -1.171295e-16 1 1 0.5
知道如何创建此列表吗?谢谢,罗恩
答案 0 :(得分:1)
简单的解决方案是手动制作模型列表:
results <- list(
"female" = glm(admit~female , family=binomial, dat)
,"apcalc" = glm(admit~apcalc , family=binomial, dat)
,"num" = glm(admit~num , family=binomial, dat)
,"female + apcalc" = glm(admit~female + apcalc, family=binomial, dat)
,"female + num" = glm(admit~female + num , family=binomial, dat)
,"apcalc + num" = glm(admit~apcalc + num , family=binomial, dat)
,"all" = glm(admit~female + apcalc + num, family=binomial, dat)
)
然后你可以通过lapply
模型列表检查模型:
lapply(results, summary)
或更高级(系数统计):
require(plyr)
ldply(results, function(m) {
name_rows(as.data.frame(summary(m)$coefficients))
})
以类似的方式,您可以提取所需的所有信息。只需编写函数来提取所需的统计信息,将glm模型作为参数:
get_everything_i_want <- function(model) {
#... do what i want ...
# eg:
list(AIC = AIC(model))
}
然后应用于每个模型:
lapply(results, get_everything_i_want)
# $female
# $female$AIC
# [1] 15.0904
# $apcalc
# $apcalc$AIC
# [1] 15.0904
# $num
# $num$AIC
# [1] 15.0904
# $`female + apcalc`
# $`female + apcalc`$AIC
# [1] 17.0904
# $`female + num`
# $`female + num`$AIC
# [1] 17.0904
# $`apcalc + num`
# $`apcalc + num`$AIC
# [1] 17.0904
# $all
# $all$AIC
# [1] 19.0904