将1GB数据加载到hbase中需要1小时

时间:2014-05-02 06:06:22

标签: java hadoop mapreduce hbase hadoop2

我想将1GB(1000万条记录)CSV文件加载到Hbase中。我为它写了Map-Reduce程序。我的代码工作正常但需要1小时才能完成。最后一个减速机需要超过半小时的时间。有人可以帮帮我吗?

我的代码如下:

Driver.Java


    package com.cloudera.examples.hbase.bulkimport;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.KeyValue;
    import org.apache.hadoop.hbase.client.HTable;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    /**
     * HBase bulk import example
* Data preparation MapReduce job driver *
    *
  1. args[0]: HDFS input path *
  2. args[1]: HDFS output path *
  3. args[2]: HBase table name *
*/ public class Driver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); /* * NBA Final 2010 game 1 tip-off time (seconds from epoch) * Thu, 03 Jun 2010 18:00:00 PDT */ // conf.setInt("epoch.seconds.tipoff", 1275613200); conf.set("hbase.table.name", args[2]); // Load hbase-site.xml HBaseConfiguration.addHbaseResources(conf); Job job = new Job(conf, "HBase Bulk Import Example"); job.setJarByClass(HBaseKVMapper.class); job.setMapperClass(HBaseKVMapper.class); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(KeyValue.class); job.setInputFormatClass(TextInputFormat.class); HTable hTable = new HTable(conf, args[2]); // Auto configure partitioner and reducer HFileOutputFormat.configureIncrementalLoad(job, hTable); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); // Load generated HFiles into table // LoadIncrementalHFiles loader = new LoadIncrementalHFiles(conf); // loader.doBulkLoad(new Path(args[1]), hTable); } }

HColumnEnum.java


        package com.cloudera.examples.hbase.bulkimport;

    /**
     * HBase table columns for the 'srv' column family
     */
    public enum HColumnEnum {
      SRV_COL_employeeid ("employeeid".getBytes()),
      SRV_COL_eventdesc ("eventdesc".getBytes()),
      SRV_COL_eventdate ("eventdate".getBytes()),
      SRV_COL_objectname ("objectname".getBytes()),
      SRV_COL_objectfolder ("objectfolder".getBytes()),
      SRV_COL_ipaddress ("ipaddress".getBytes());

      private final byte[] columnName;

      HColumnEnum (byte[] column) {
        this.columnName = column;
      }

      public byte[] getColumnName() {
        return this.columnName;
      }
    }

HBaseKVMapper.java

package com.cloudera.examples.hbase.bulkimport;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import au.com.bytecode.opencsv.CSVParser;

/**
 * HBase bulk import example
 * <p>
 * Parses Facebook and Twitter messages from CSV files and outputs
 * <ImmutableBytesWritable, KeyValue>.
 * <p>
 * The ImmutableBytesWritable key is used by the TotalOrderPartitioner to map it
 * into the correct HBase table region.
 * <p>
 * The KeyValue value holds the HBase mutation information (column family,
 * column, and value)
 */
public class HBaseKVMapper extends
    Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {

  final static byte[] SRV_COL_FAM = "srv".getBytes();
  final static int NUM_FIELDS = 6;

  CSVParser csvParser = new CSVParser();
  int tipOffSeconds = 0;
  String tableName = "";

  // DateTimeFormatter p = DateTimeFormat.forPattern("MMM dd, yyyy HH:mm:ss")
  //    .withLocale(Locale.US).withZone(DateTimeZone.forID("PST8PDT"));

  ImmutableBytesWritable hKey = new ImmutableBytesWritable();
  KeyValue kv;

  /** {@inheritDoc} */
  @Override
  protected void setup(Context context) throws IOException,
      InterruptedException {
    Configuration c = context.getConfiguration();

  //  tipOffSeconds = c.getInt("epoch.seconds.tipoff", 0);
    tableName = c.get("hbase.table.name");
  }

  /** {@inheritDoc} */
  @Override
  protected void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {

    /*if (value.find("Service,Term,") > -1) {
      // Skip header
      return;
    }*/

    String[] fields = null;

    try {
      fields = value.toString().split(",");
      //csvParser.parseLine(value.toString());
    } catch (Exception ex) {
      context.getCounter("HBaseKVMapper", "PARSE_ERRORS").increment(1);
      return;
    }

    if (fields.length != NUM_FIELDS) {
      context.getCounter("HBaseKVMapper", "INVALID_FIELD_LEN").increment(1);
      return;
    }

    // Get game offset in seconds from tip-off
  /*  DateTime dt = null;

    try {
      dt = p.parseDateTime(fields[9]);
    } catch (Exception ex) {
      context.getCounter("HBaseKVMapper", "INVALID_DATE").increment(1);
      return;
    }

    int gameOffset = (int) ((dt.getMillis() / 1000) - tipOffSeconds);
    String offsetForKey = String.format("%04d", gameOffset);

    String username = fields[2];
    if (username.equals("")) {
      username = fields[3];
    }*/

    // Key: e.g. "1200:twitter:jrkinley"
    hKey.set(String.format("%s|%s|%s|%s|%s|%s", fields[0], fields[1], fields[2],fields[3],fields[4],fields[5])
        .getBytes());

    // Service columns
    if (!fields[0].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_employeeid.getColumnName(), fields[0].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[1].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_eventdesc.getColumnName(), fields[1].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[2].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_eventdate.getColumnName(), fields[2].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[3].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_objectname.getColumnName(), fields[3].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[4].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_objectfolder.getColumnName(), fields[4].getBytes());
      context.write(hKey, kv);
    }

    if (!fields[5].equals("")) {
      kv = new KeyValue(hKey.get(), SRV_COL_FAM,
          HColumnEnum.SRV_COL_ipaddress.getColumnName(), fields[5].getBytes());
      context.write(hKey, kv);
    }


    context.getCounter("HBaseKVMapper", "NUM_MSGS").increment(1);

    /*
     * Output number of messages per quarter and before/after game. This should
     * correspond to the number of messages per region in HBase
     */
  /*  if (gameOffset < 0) {
      context.getCounter("QStats", "BEFORE_GAME").increment(1);
    } else if (gameOffset < 900) {
      context.getCounter("QStats", "Q1").increment(1);
    } else if (gameOffset < 1800) {
      context.getCounter("QStats", "Q2").increment(1);
    } else if (gameOffset < 2700) {
      context.getCounter("QStats", "Q3").increment(1);
    } else if (gameOffset < 3600) {
      context.getCounter("QStats", "Q4").increment(1);
    } else {
      context.getCounter("QStats", "AFTER_GAME").increment(1);
    }*/
  }
}

package com.cloudera.examples.hbase.bulkimport; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import au.com.bytecode.opencsv.CSVParser; /** * HBase bulk import example * <p> * Parses Facebook and Twitter messages from CSV files and outputs * <ImmutableBytesWritable, KeyValue>. * <p> * The ImmutableBytesWritable key is used by the TotalOrderPartitioner to map it * into the correct HBase table region. * <p> * The KeyValue value holds the HBase mutation information (column family, * column, and value) */ public class HBaseKVMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> { final static byte[] SRV_COL_FAM = "srv".getBytes(); final static int NUM_FIELDS = 6; CSVParser csvParser = new CSVParser(); int tipOffSeconds = 0; String tableName = ""; // DateTimeFormatter p = DateTimeFormat.forPattern("MMM dd, yyyy HH:mm:ss") // .withLocale(Locale.US).withZone(DateTimeZone.forID("PST8PDT")); ImmutableBytesWritable hKey = new ImmutableBytesWritable(); KeyValue kv; /** {@inheritDoc} */ @Override protected void setup(Context context) throws IOException, InterruptedException { Configuration c = context.getConfiguration(); // tipOffSeconds = c.getInt("epoch.seconds.tipoff", 0); tableName = c.get("hbase.table.name"); } /** {@inheritDoc} */ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { /*if (value.find("Service,Term,") > -1) { // Skip header return; }*/ String[] fields = null; try { fields = value.toString().split(","); //csvParser.parseLine(value.toString()); } catch (Exception ex) { context.getCounter("HBaseKVMapper", "PARSE_ERRORS").increment(1); return; } if (fields.length != NUM_FIELDS) { context.getCounter("HBaseKVMapper", "INVALID_FIELD_LEN").increment(1); return; } // Get game offset in seconds from tip-off /* DateTime dt = null; try { dt = p.parseDateTime(fields[9]); } catch (Exception ex) { context.getCounter("HBaseKVMapper", "INVALID_DATE").increment(1); return; } int gameOffset = (int) ((dt.getMillis() / 1000) - tipOffSeconds); String offsetForKey = String.format("%04d", gameOffset); String username = fields[2]; if (username.equals("")) { username = fields[3]; }*/ // Key: e.g. "1200:twitter:jrkinley" hKey.set(String.format("%s|%s|%s|%s|%s|%s", fields[0], fields[1], fields[2],fields[3],fields[4],fields[5]) .getBytes()); // Service columns if (!fields[0].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_employeeid.getColumnName(), fields[0].getBytes()); context.write(hKey, kv); } if (!fields[1].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_eventdesc.getColumnName(), fields[1].getBytes()); context.write(hKey, kv); } if (!fields[2].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_eventdate.getColumnName(), fields[2].getBytes()); context.write(hKey, kv); } if (!fields[3].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_objectname.getColumnName(), fields[3].getBytes()); context.write(hKey, kv); } if (!fields[4].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_objectfolder.getColumnName(), fields[4].getBytes()); context.write(hKey, kv); } if (!fields[5].equals("")) { kv = new KeyValue(hKey.get(), SRV_COL_FAM, HColumnEnum.SRV_COL_ipaddress.getColumnName(), fields[5].getBytes()); context.write(hKey, kv); } context.getCounter("HBaseKVMapper", "NUM_MSGS").increment(1); /* * Output number of messages per quarter and before/after game. This should * correspond to the number of messages per region in HBase */ /* if (gameOffset < 0) { context.getCounter("QStats", "BEFORE_GAME").increment(1); } else if (gameOffset < 900) { context.getCounter("QStats", "Q1").increment(1); } else if (gameOffset < 1800) { context.getCounter("QStats", "Q2").increment(1); } else if (gameOffset < 2700) { context.getCounter("QStats", "Q3").increment(1); } else if (gameOffset < 3600) { context.getCounter("QStats", "Q4").increment(1); } else { context.getCounter("QStats", "AFTER_GAME").increment(1); }*/ } }

请帮助我提高性能,如果您有任何替代解决方案,请告知我们。

我的mapred-site.xml

hbase-site.xml

 <?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>
  <name>mapred.job.tracker</name>
    <value>namenode:54311</value>
    </property>

<property>
  <name>mapred.reduce.parallel.copies</name>
    <value>20</value>
    </property>

<property>
  <name>tasktracker.http.threads</name>
    <value>50</value>
    </property>

<property>
  <name>mapred.job.shuffle.input.buffer.percent</name>
    <value>0.70</value>
    </property>

<property>
  <name>mapred.tasktracker.map.tasks.maximum</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.tasktracker.reduce.tasks.maximum</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.map.tasks</name>
    <value>4</value>
    </property>

<property>
  <name>reduce.map.tasks</name>
    <value>4</value>
    </property>

<property>
  <name>mapred.job.shuffle.merge.percent</name>
    <value>0.65</value>
    </property>

<property>
  <name>mapred.task.timeout</name>
    <value>1200000</value>
    </property>

<property>
    <name>mapred.child.java.opts</name>
        <value>-Xms1024M -Xmx2048M</value>
        </property>



<property>
  <name>mapred.job.reuse.jvm.num.tasks</name>
    <value>-1</value>
    </property>

<property>
    <name>mapred.compress.map.output</name>
    <value>true</value>
</property>

<property>
    <name>mapred.map.output.compression.codec</name>
    <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

<property>
    <name>io.sort.mb</name>
    <value>800</value>
</property>


<property>
  <name>mapred.child.ulimit</name>
    <value>unlimited</value>
    </property>

<property>
<name>io.sort.factor</name>
<value>100</value>
<description>More streams merged at once while sorting files.</description>
</property>  


 <property>
 <name>mapreduce.admin.map.child.java.opts</name>
 <value>-Djava.net.preferIPv4Stack=true</value>
 </property>
 <property>
 <name>mapreduce.admin.reduce.child.java.opts</name>
 <value>-Djava.net.preferIPv4Stack=true</value>
 </property>


<property>
   <name>mapred.min.split.size</name>
   <value>0</value>
</property>

<property>
   <name>mapred.job.map.memory.mb</name>
     <value>-1</value>
     </property>

<property>
   <name>mapred.jobtracker.maxtasks.per.job</name>
        <value>-1</value>
             </property>


</configuration>

请帮助我,这样我可以提高我的表现。

3 个答案:

答案 0 :(得分:5)

首先,为什么我们需要Mapreduce程序将数据加载到Hbase中以获得如此小的文件(1GB)。

根据我的经验,我使用Jackson流处理5GB Json(我不想将所有json都记入内存)并在8分钟内通过使用批处理技术在Hbase中持续存在。

我在批量列表对象100000记录中使用了hbase put。

下面是我实现此目的的代码段。解析其他格式也可以做同样的事情)

可能需要在2个地方调用此方法

1)批量为100000条记录。

2)处理提醒您的批记录小于100000

  public void addRecord(final ArrayList<Put> puts, final String tableName) throws Exception {
        try {
            final HTable table = new HTable(HBaseConnection.getHBaseConfiguration(), getTable(tableName));
            table.put(puts);
            LOG.info("INSERT record[s] " + puts.size() + " to table " + tableName + " OK.");
        } catch (final Throwable e) {
            e.printStackTrace();
        } finally {
            LOG.info("Processed ---> " + puts.size());
            if (puts != null) {
                puts.clear();
            }
        }
    }

答案 1 :(得分:0)

我只创建了mapper类并采用了hbase输出格式类。现在它需要10分钟。我的网络速度非常慢,这就是为什么它需要很长时间。

答案 2 :(得分:0)

可以通过指定创建Hbase表时要使用的Region拆分数来进一步微调。由于批量加载的reducer实例数量也将取决于Regions的数量。这可以使用以下命令

完成
hbase org.apache.hadoop.hbase.util.RegionSplitter -c <number of regions> -f <column families> <New Hbase Table Name> <splitAlgorithm>

对于拆分算法,可以指定

  • UniformSplit - 将密钥视为任意字节

  • HexStringSplit - 将密钥视为十六进制ASCII