Isabelle中是否存在以下等式:
setprod f (UNIV :: 'n∷finite set) = setprod (λx. x) (f ` (UNIV :: 'n∷finite set))
如果是,我该如何证明?
(* tested with Isabelle2013-2 *)
theory Notepad
imports
Main
"~~/src/HOL/Library/Polynomial"
begin
notepad
begin{
fix f :: "'n∷finite ⇒ ('a::comm_ring_1 poly)"
have "finite (UNIV :: 'n∷finite set)" by simp
from this have "setprod f (UNIV :: 'n∷finite set) = setprod (λx. x) (f ` (UNIV :: 'n∷finite set))"
sorry (* can this be proven ? *)
答案 0 :(得分:3)
只有当您添加inj f
假设f
是单射的假设时,引理才会成立。然后从文库引理setprod_reindex_id
得到引理,可以使用命令find_theorems setprod image
找到它。
setprod_reindex_id [unfolded id_def]
为您提供了您要求的引理的通用版本。