我正在尝试准备一个神经网络,根据两个参数'no'& amp;来预测产品的索赔数量。 '年龄'。 以下数据集是神经网络的输入。
structure(list(no = c(25305.4104099149, 49282.7650363303, 71596.161588407,
93100.2399492689, 120575.89348652, 138907.168168798, 152853.150129645,
164658.048266216, 203323.951054253, 217964.514231364, 232098.010631853,
245528.300551639, 257729.677107825, 273017.858354583, 289943.942081732,
307253.529762711, 322779.210756104, 338484.424561413, 354509.62945598,
376508.167449508, 392559.686167136, 406403.704572922, 418237.95321136,
428306.956736623, 443032.309329306, 462815.029777392, 483057.035564531,
501119.337852308, 516468.28989971, 529231.965438745, 546230.529378035),
age = c(63.5793740593707, 102.316649334314, 139.062062015527,
159.908188195329, 221.139098010716, 243.371632144127, 255.656705912817,
321.979062244126, 302.183543005839, 354.719062375634, 369.989444935937,
415.562730056562, 445.18103403067, 487.443822982359, 522.664771025013,
531.055799381952, 588.227179384567, 627.155320232965, 631.325866647729,
656.228738193787, 674.252217317525, 717.171080443709, 741.672049752712,
788.251261134812, 798.113504685438, 831.731613476353, 834.814816968948,
868.754851062387, 891.362029551517, 902.022293484355, 940.795814337874),
claims = c(430.964844652385, 732.996578820216, 1702.3121722574,
2251.25233558302, 2197.47809502525, 2567.04757960458, 3031.86042202782,
3156.90611199034, 3863.87816105778, 4111.89975688297, 3775.93067659216,
4012.49766196774, 4312.44312947351, 4180.22855748422, 5089.44484309535,
4257.88997259059, 4880.90586497903, 4463.20376379347, 4240.41527392955,
4784.76670484109, 5402.00394657619, 4599.18095060565, 4003.91468429224,
4029.72081951048, 3774.73142127963, 3920.30299815048, 5640.00980484863,
5609.58082520698, 4689.03553448074, 5021.68591677232, 6583.74468086371),
expense = c(152020.866139235, 435514.001634924, 752077.230564814,
1206688.79158373, 1291739.60434588, 1421308.36224772, 2050740.38970347,
1975198.4497045, 2274222.98020964, 2579595.43870509, 2129258.22735162,
2135819.30924201, 2670328.44657756, 2908678.20678848, 2647633.44523976,
2416617.98013342, 2312104.28655066, 2603487.56885879, 2598480.12097434,
2747610.29007465, 2856983.01477582, 2453661.76656217, 2557917.28443019,
2952529.81656875, 2177766.2760928, 2077444.9802322, 3542576.76934085,
4050503.17869956, 3737028.1474149, 3497074.2505681, 3541174.73116362)),
.Names = c("no", "age", "claims", "expense"), row.names = c(NA, -31L),
class = "data.frame")
我正在尝试的神经网络是
claimnet = neuralnet(claims~no+age,data=claimdata,hidden=10,threshold=0.01,err.fct='sse')
对于所有31条记录,我从 claimnet $ net.result获得的输出/拟合为3913.491497 。当我尝试用这个神经网络进行计算时,结果也是一样的。我认为必须要传递一些参数才能获得正确的输出。
请告诉我哪里出错了。
答案 0 :(得分:6)
似乎没有跳过层连接,神经网络架构无法正确逼近模型。我在neuralnet
中找不到这样的选项,但您可以使用nnet
作为替代选项。
library(nnet)
res <- nnet(claims ~ .,
data=claimdata[,1:3],
size=10, linout=TRUE, skip=TRUE, MaxNWts=10000, trace=FALSE, maxit=100)
predict(res, newdata=claimdata[,1:2])
答案 1 :(得分:5)
我可能错了,但我很确定你需要在训练ANN之前规范化你的数据。您可以使用标准分数方法将数据从-1标准化为1。此外,确保您的数据是正常分布的。但是,我不确定神经网络是否强制要求。
使用您的数据这就是我所做的。
plot(density(claimdata$no));shapiro.test(claimdata$no)
plot(density(claimdata$age));shapiro.test(claimdata$age)
plot(density((claimdata$claims)^2));shapiro.test(claimdata$claims^2)
claimdata$claimsSQ<- claimdata$claims^2
fml<- as.formula("claimsSQ ~ no + age");
data_Train<- claimdata[complete.cases(claimdata),];
scMeans<- apply(data_Train,2,mean);
scSTDEV<- apply(data_Train,2,sd);
sc_Train<- scale(data_Train);
#Select training samples
inTrain <- sample(1:nrow(sc_Train), floor(.9*nrow(sc_Train)));
# Get the predictor data
trainingPredictors <- sc_Train[inTrain, ];
# Get Data not used in Training set
testPredictors <- sc_Train[-inTrain,];
train.nnet<- nnet(fml,data=trainingPredictors,linout=T,
size = 2, rang = 0.1,decay = 5e-4, maxit = 200);
res.nnet<- predict(train.nnet,testPredictors);
results<- cbind(claimdata$claims[-inTrain],
sqrt(res.nnet*scSTDEV[5]+scMeans[5]));results;
另外,看看, “第3章 - 神经网络数据中的数据准备 人工神经网络在汇率预测中的应用分析 国际运筹学系列及其管理科学卷107,2007,第39-62页“。
希望这有帮助,
干杯。
答案 2 :(得分:0)
@George Dontas和@Jean B。:在这里,Lean Yu等人。州第55页: “对于使用神经网络进行单变量时间序列分析,非平稳性是时间序列分析的一个问题(Moody,1995)。因此,数据去趋势和去季节化以及数据平稳性也是复杂的重要问题 数据分析。对于趋势和季节性数据和非平稳数据,差异或对数差异(Weigend和Gershenfeld,1994; Tseng等,2002; Moody,1995)是一种广泛使用的简单有效的治疗方法。“
就我而言,这意味着如果某人使用时间序列,则应在构建ANN时通过差分或对数差异确保平稳性。