假设您使用dct函数,然后不对数据进行操作并使用反转变换;倒置数据不会与预转换数据相同吗?为什么浮点问题?是报告的问题还是正常行为?
In [21]: a = [1.2, 3.4, 5.1, 2.3, 4.5]
In [22]: b = dct(a)
In [23]: b
Out[23]: array([ 33. , -4.98384545, -4.5 , -5.971707 , 4.5 ])
In [24]: c = idct(b)
In [25]: c
Out[25]: array([ 12., 34., 51., 23., 45.])
任何人都有解释为什么?当然,一个简单的c*10**-1
可以解决问题,但是如果你重复调用函数在几个维度上使用它,那么错误就会变大:
In [37]: a = np.random.rand(3,3,3)
In [38]: d = dct(dct(dct(a).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)
In [39]: e = idct(idct(idct(d).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)
In [40]: a
Out[40]:
array([[[ 0.48709809, 0.50624831, 0.91190972],
[ 0.56545798, 0.85695062, 0.62484782],
[ 0.96092354, 0.17453537, 0.17884233]],
[[ 0.29433402, 0.08540074, 0.18574437],
[ 0.09942075, 0.78902363, 0.62663572],
[ 0.20372951, 0.67039551, 0.52292875]],
[[ 0.79952289, 0.48221372, 0.43838685],
[ 0.25559683, 0.39549153, 0.84129493],
[ 0.69093533, 0.71522961, 0.16522915]]])
In [41]: e
Out[41]:
array([[[ 105.21318703, 109.34963575, 196.97249887],
[ 122.13892469, 185.10133376, 134.96712825],
[ 207.55948396, 37.69964085, 38.62994399]],
[[ 63.57614855, 18.44656009, 40.12078466],
[ 21.47488098, 170.42910452, 135.35331646],
[ 44.00557341, 144.80543099, 112.95260949]],
[[ 172.69694529, 104.15816275, 94.69156014],
[ 55.20891593, 85.42617016, 181.71970442],
[ 149.2420308 , 154.48959477, 35.68949734]]])
此处指向doc的链接。
答案 0 :(得分:7)
默认情况下,dct和idct看起来不规范化。定义dct
以下列方式调用fftpack.dct
。对idct
执行相同的操作。
In [13]: dct = lambda x: fftpack.dct(x, norm='ortho')
In [14]: idct = lambda x: fftpack.idct(x, norm='ortho')
完成后,您将在执行转换后返回原始答案。
In [19]: import numpy
In [20]: a = numpy.random.rand(3,3,3)
In [21]: d = dct(dct(dct(a).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)
In [22]: e = idct(idct(idct(d).transpose(0,2,1)).transpose(2,1,0)).transpose(2,1,0).transpose(0,2,1)
In [23]: a
Out[23]:
array([[[ 0.51699637, 0.42946223, 0.89843545],
[ 0.27853391, 0.8931508 , 0.34319118],
[ 0.51984431, 0.09217771, 0.78764716]],
[[ 0.25019845, 0.92622331, 0.06111409],
[ 0.81363641, 0.06093368, 0.13123373],
[ 0.47268657, 0.39635091, 0.77978269]],
[[ 0.86098829, 0.07901332, 0.82169182],
[ 0.12560088, 0.78210188, 0.69805434],
[ 0.33544628, 0.81540172, 0.9393219 ]]])
In [24]: e
Out[24]:
array([[[ 0.51699637, 0.42946223, 0.89843545],
[ 0.27853391, 0.8931508 , 0.34319118],
[ 0.51984431, 0.09217771, 0.78764716]],
[[ 0.25019845, 0.92622331, 0.06111409],
[ 0.81363641, 0.06093368, 0.13123373],
[ 0.47268657, 0.39635091, 0.77978269]],
[[ 0.86098829, 0.07901332, 0.82169182],
[ 0.12560088, 0.78210188, 0.69805434],
[ 0.33544628, 0.81540172, 0.9393219 ]]])
我不确定为什么默认情况下没有选择规范化。但是,当使用ortho
,dct
和idct
时,每个似乎都会按1/sqrt(2 * N)
或1/sqrt(4 * N)
系数进行归一化。可能存在dct
而非idct
需要规范化的应用程序,反之亦然。