求二元图连通分量引起顶点子集的算法

时间:2012-11-06 16:21:28

标签: algorithm graph matrix bipartite

鉴于二分图 G =( U V E ),我想找到所有(最大) V 的子集,它们是 G 的连接组件的一个“侧”。

例如,对于关联矩阵

    0 1 0 0 0 1
    1 0 0 0 0 1
    0 0 0 0 0 0
A = 0 0 0 0 1 0
    0 0 1 0 1 0
    0 1 0 0 0 0
    0 0 0 1 0 0

其中行索引表示 U 且列索引表示 V ,输出应为集合{0,1,5},{2,4},和{3}。

这相当于任何标准问题吗?更重要的是,有一个有效的解决方案吗?

1 个答案:

答案 0 :(得分:1)

这类似于查找图形的所有连通分量,其在边和顶点的数量上是线性的。此方法的标准算法是在每个顶点上进行广度或深度优先搜索。

除了减少与此算法相关的常数外,我不认为通过利用图的二分性质可以加快复杂性。