找到最长的子阵列,其总和可被K整除。 有可能在O(n)? 如果没有,那么可以更好地完成n ^ 2?
答案 0 :(得分:7)
让s[i] = sum of first i elements modulo K
。
我们有:
s[i] = (s[i - 1] + a[i]) % K
我们必须为每个i
找到最小的j
s[i] == s[j]
。您可以通过散列s[i]
值来找到它。如果K
很小,您可以保留数组p[i] = first position for which s[k] == i
。
复杂性为O(n)
。
答案 1 :(得分:0)
function longestRangeDividableBy(k) {
arrayOfRanges
sum =0
startIndex = 0
endIndex = 0
for ( i=0 ; i < array.size; i++) {
sum += array[i]
if (sum % k != 0) {
endindex = i
} else {
arrayOfRanges.add(new Range(startIndex, endIndex);
startIndex = i+1
sum = 0
}
}
arrayOfRanges.sortDescending();
return arrayOfRanges.get(0).lengthOfRange()
}
这里我说范围的搜索是线性的。因此,它取决于算法为O(n)或n ^ 2的排序。如果我错了,请纠正我。
答案 2 :(得分:0)
如前面的答案所示,这可以在O(N)时间和空间内完成。其他答案提到散列和排序。但是,这个问题都不需要。在下面说明一次通过O(N)方法的python程序中,rr
是输入数组,vb[x]
是具有模块化值x
的第一个子项的索引,ve[x]
1}}是模块值x
的最后一个子索引。程序后显示典型输出。
import random
K, N, vmax = 10, 25, 99
rr = [random.randrange(vmax) for x in range(N)]
print 'rr', rr
vb, ve = [-1 for x in range(K)], [-1 for x in range(K)]
vb[0] = ve[0] = mb = me = ms = s = 0
for i in range(N):
s = (s + rr[i]) % K
ve[s] = i+1
if vb[s] < 0:
vb[s] = i+1
if ve[s] - vb[s] > me - mb:
mb, me, ms = vb[s], ve[s], s
print "Max len is", me-mb, "for rem", ms, "at [", mb,":",me, "], total=", sum(rr[mb:me])
典型输出,K = 10且N = 25:
rr [26, 57, 0, 70, 33, 94, 23, 60, 62, 3, 28, 14, 12, 72, 6, 86, 29, 10, 60, 50, 21, 37, 40, 96, 73]
Max len is 21 for rem 3 at [ 2 : 23 ], total= 810
答案 3 :(得分:0)
as rightly pointed out by @IVIad you have to keep a track of the current
sum modulo k.
you can write it as s=0
s=(s+arr1[i])%k
after that in a for loop you can use a dictionary and see if the
s is present in dictionary ;
if yes then update the length else update the dictionary .
below is the code.
def longestsubsarraywithsumdivisiblebyk(arr1,k):
h={}
h[0]=-1
maxlen=0
s=0
for i in range(len(arr1)):
s=(s+arr1[i])%k
if s in h:
maxlen=max(maxlen,i-h[s])
else:
h[s]=i
return maxlen