递归SQL语句(Postgresql) - 简化版

时间:2012-07-19 15:10:30

标签: sql postgresql common-table-expression recursive-query

对于更复杂的问题,这是一个简化的问题:

Recursive SQL statement (PostgreSQL 9.1.4)

简化问题

鉴于您有3个列中存储的上三角矩阵(RowIndex,ColumnIndex,MatrixValue):

   ColumnIndex       
    1   2   3   4   5
1   2   2   3   3   4
2   4   4   5   6   X
3   3   2   2   X   X
4   2   1   X   X   X
5   1   X   X   X   X

X值将使用以下算法计算:

M[i,j] = (M[i-1,j]+M[i,j-1])/2
(i= rows, j = columns, M=matrix)

Example:
M[3,4] = (M[2,4]+M[3,3])/2
M[3,5] = (m[2,5]+M[3,4])/2

完整的所需结果是:

   ColumnIndex       
    1   2   3    4      5
1   2   2   3    3      4
2   4   4   5    6      5
3   3   2   2    4      4.5
4   2   1   1.5  2.75   3.625
5   1   1   1.25 2.00   2.8125

示例数据:

create table matrix_data (
    RowIndex integer,
    ColumnIndex integer,
    MatrixValue numeric);

    insert into matrix_data values (1,1,2);
    insert into matrix_data values (1,2,2);
    insert into matrix_data values (1,3,3);
    insert into matrix_data values (1,4,3);
    insert into matrix_data values (1,5,4);
    insert into matrix_data values (2,1,4);
    insert into matrix_data values (2,2,4);
    insert into matrix_data values (2,3,5);
    insert into matrix_data values (2,4,6);
    insert into matrix_data values (3,1,3);
    insert into matrix_data values (3,2,2);
    insert into matrix_data values (3,3,2);
    insert into matrix_data values (4,1,2);
    insert into matrix_data values (4,2,1);
    insert into matrix_data values (5,1,1);

可以这样做吗?

4 个答案:

答案 0 :(得分:2)

测试设置:

CREATE TEMP TABLE matrix (
    rowindex integer,
    columnindex integer,
    matrixvalue numeric);

INSERT INTO matrix VALUES
 (1,1,2),(1,2,2),(1,3,3),(1,4,3),(1,5,4)
,(2,1,4),(2,2,4),(2,3,5),(2,4,6)
,(3,1,3),(3,2,2),(3,3,2)
,(4,1,2),(4,2,1)
,(5,1,1);

使用DO

在LOOP中运行INSERT
DO $$
BEGIN

FOR i IN 2 .. 5 LOOP
   FOR j IN 7-i .. 5 LOOP
      INSERT INTO matrix
      VALUES (i,j, (
         SELECT sum(matrixvalue)/2
         FROM   matrix
         WHERE  (rowindex, columnindex) IN ((i-1, j),(i, j-1))
         ));
   END LOOP;
END LOOP;

END;
$$

见结果:

SELECT * FROM matrix order BY 1,2;

答案 1 :(得分:1)

这可以在单个SQL select语句中完成,但仅限于因为不需要递归。我将概述解决方案。如果你真的想要SQL代码,请告诉我。

首先,请注意,有助于总和的唯一项目是沿着对角线。现在,如果我们遵循(1,5)中值“4”的贡献,它贡献4/2到(2,5)和4/4到(3,5)和4/8到(4,5) )。每次,贡献减少一半,因为(a + b)/ 2是(a / 2 + b / 2)。

当我们扩展它时,我们开始看到类似于Pascal三角形的模式。实际上,对于下三角矩阵中的任何给定点(在具有值的位置下方),您可以找到对该值有贡献的对角元素。向上延伸垂直线以对角线和水平线以对角线。这些是对角线的贡献者。

他们贡献了多少?好吧,为此,我们可以去Pascal的三角形。对于我们有值的下面的第一个对角线,贡献是(1,1)/ 2。对于第二个对角线,(1,2,1)/ 4。第三,(1,3,3,1)/ 8。 。 。等等。

幸运的是,我们可以使用公式(组合学中的“选择”函数)计算每个值的贡献。 2的力量很容易。并且,确定给定单元格与对角线的距离并不太难。

所有这些都可以组合成一个Postgres SQL语句。但是,@ Erwin的解决方案也有效。如果他的解决方案不能满足您的需求,我只想努力调试语句。

答案 2 :(得分:1)

...这里是带有多个嵌入式CTE(tm)的递归CTE:

DROP SCHEMA tmp CASCADE;
CREATE SCHEMA tmp ;
SET search_path=tmp;

CREATE TABLE matrix_data (
    yyy integer,
    xxx integer,
    val numeric);

    insert into matrix_data (yyy,xxx,val) values
      (1,1,2) , (1,2,2) , (1,3,3) , (1,4,3) , (1,5,4)
    , (2,1,4) , (2,2,4) , (2,3,5) , (2,4,6)
    , (3,1,3) , (3,2,2) , (3,3,2)
    , (4,1,2) , (4,2,1)
    , (5,1,1)
        ;

WITH RECURSIVE rr AS (
        WITH xx AS (
                SELECT MIN(xxx) AS x0
                , MAX(xxx) AS x1
                FROM matrix_data
                )
        , mimax AS (
                SELECT generate_series(xx.x0,xx.x1) AS xxx
                FROM xx
                )
        , yy AS (
                SELECT MIN(yyy) AS y0
                , MAX(yyy) AS y1
                FROM matrix_data
                )
        , mimay AS (
                SELECT generate_series(yy.y0,yy.y1) AS yyy
                FROM yy
                )
        , cart AS (
                SELECT * FROM mimax mm
                JOIN mimay my ON (1=1)
                )
        , empty AS (
                SELECT * FROM cart ca
                WHERE NOT EXISTS (
                        SELECT *
                        FROM matrix_data nx
                        WHERE nx.xxx = ca.xxx
                        AND nx.yyy = ca.yyy
                        )
                )
        , hot AS (
                SELECT * FROM empty emp
                WHERE EXISTS (
                        SELECT *
                        FROM matrix_data ex
                        WHERE ex.xxx = emp.xxx -1
                        AND ex.yyy = emp.yyy
                        )
                AND EXISTS (
                        SELECT *
                        FROM matrix_data ex
                        WHERE ex.xxx = emp.xxx
                        AND ex.yyy = emp.yyy -1
                        )
                    )
        -- UPDATE from here:
        SELECT h.xxx,h.yyy, md.val / 2 AS val
        FROM hot h
        JOIN matrix_data md ON
                (md.yyy = h.yyy AND md.xxx = h.xxx-1)
                OR (md.yyy = h.yyy-1 AND md.xxx = h.xxx)
        UNION ALL
        SELECT e.xxx,e.yyy, r.val / 2 AS val
        FROM empty e
        JOIN rr r ON ( e.xxx = r.xxx+1 AND e.yyy = r.yyy)
                OR ( e.xxx = r.xxx AND e.yyy = r.yyy+1 )
        )
INSERT INTO matrix_data(yyy,xxx,val)
SELECT DISTINCT yyy,xxx
        ,SUM(val)
FROM rr
GROUP BY yyy,xxx
        ;

SELECT * FROM matrix_data
        ;

新结果:

NOTICE:  drop cascades to table tmp.matrix_data
DROP SCHEMA
CREATE SCHEMA
SET
CREATE TABLE
INSERT 0 15
INSERT 0 10
 yyy | xxx |          val           
-----+-----+------------------------
   1 |   1 |                      2
   1 |   2 |                      2
   1 |   3 |                      3
   1 |   4 |                      3
   1 |   5 |                      4
   2 |   1 |                      4
   2 |   2 |                      4
   2 |   3 |                      5
   2 |   4 |                      6
   3 |   1 |                      3
   3 |   2 |                      2
   3 |   3 |                      2
   4 |   1 |                      2
   4 |   2 |                      1
   5 |   1 |                      1
   2 |   5 |     5.0000000000000000
   5 |   5 | 2.81250000000000000000
   4 |   3 | 1.50000000000000000000
   3 |   5 | 4.50000000000000000000
   5 |   2 | 1.00000000000000000000
   3 |   4 | 4.00000000000000000000
   5 |   3 | 1.25000000000000000000
   4 |   5 | 3.62500000000000000000
   4 |   4 | 2.75000000000000000000
   5 |   4 | 2.00000000000000000000
(25 rows)

答案 3 :(得分:0)

 while (select max(ColumnIndex+RowIndex) from matrix_data)<10
 begin
      insert matrix_data
      select c1.RowIndex, c1.ColumnIndex+1, (c1.MatrixValue+c2.MatrixValue)/2 
      from matrix_data c1
           inner join
           matrix_data c2 
           on c1.ColumnIndex+1=c2.ColumnIndex and c1.RowIndex-1 = c2.RowIndex   
      where c1.RowIndex+c1.ColumnIndex=(select max(RowIndex+ColumnIndex) from matrix_data) 
      and c1.ColumnIndex<5
 end