对于更复杂的问题,这是一个简化的问题:
Recursive SQL statement (PostgreSQL 9.1.4)
简化问题
鉴于您有3个列中存储的上三角矩阵(RowIndex,ColumnIndex,MatrixValue):
ColumnIndex
1 2 3 4 5
1 2 2 3 3 4
2 4 4 5 6 X
3 3 2 2 X X
4 2 1 X X X
5 1 X X X X
X值将使用以下算法计算:
M[i,j] = (M[i-1,j]+M[i,j-1])/2
(i= rows, j = columns, M=matrix)
Example:
M[3,4] = (M[2,4]+M[3,3])/2
M[3,5] = (m[2,5]+M[3,4])/2
完整的所需结果是:
ColumnIndex
1 2 3 4 5
1 2 2 3 3 4
2 4 4 5 6 5
3 3 2 2 4 4.5
4 2 1 1.5 2.75 3.625
5 1 1 1.25 2.00 2.8125
示例数据:
create table matrix_data (
RowIndex integer,
ColumnIndex integer,
MatrixValue numeric);
insert into matrix_data values (1,1,2);
insert into matrix_data values (1,2,2);
insert into matrix_data values (1,3,3);
insert into matrix_data values (1,4,3);
insert into matrix_data values (1,5,4);
insert into matrix_data values (2,1,4);
insert into matrix_data values (2,2,4);
insert into matrix_data values (2,3,5);
insert into matrix_data values (2,4,6);
insert into matrix_data values (3,1,3);
insert into matrix_data values (3,2,2);
insert into matrix_data values (3,3,2);
insert into matrix_data values (4,1,2);
insert into matrix_data values (4,2,1);
insert into matrix_data values (5,1,1);
可以这样做吗?
答案 0 :(得分:2)
测试设置:
CREATE TEMP TABLE matrix (
rowindex integer,
columnindex integer,
matrixvalue numeric);
INSERT INTO matrix VALUES
(1,1,2),(1,2,2),(1,3,3),(1,4,3),(1,5,4)
,(2,1,4),(2,2,4),(2,3,5),(2,4,6)
,(3,1,3),(3,2,2),(3,3,2)
,(4,1,2),(4,2,1)
,(5,1,1);
使用DO
:
DO $$
BEGIN
FOR i IN 2 .. 5 LOOP
FOR j IN 7-i .. 5 LOOP
INSERT INTO matrix
VALUES (i,j, (
SELECT sum(matrixvalue)/2
FROM matrix
WHERE (rowindex, columnindex) IN ((i-1, j),(i, j-1))
));
END LOOP;
END LOOP;
END;
$$
见结果:
SELECT * FROM matrix order BY 1,2;
答案 1 :(得分:1)
这可以在单个SQL select语句中完成,但仅限于因为不需要递归。我将概述解决方案。如果你真的想要SQL代码,请告诉我。
首先,请注意,有助于总和的唯一项目是沿着对角线。现在,如果我们遵循(1,5)中值“4”的贡献,它贡献4/2到(2,5)和4/4到(3,5)和4/8到(4,5) )。每次,贡献减少一半,因为(a + b)/ 2是(a / 2 + b / 2)。
当我们扩展它时,我们开始看到类似于Pascal三角形的模式。实际上,对于下三角矩阵中的任何给定点(在具有值的位置下方),您可以找到对该值有贡献的对角元素。向上延伸垂直线以对角线和水平线以对角线。这些是对角线的贡献者。
他们贡献了多少?好吧,为此,我们可以去Pascal的三角形。对于我们有值的下面的第一个对角线,贡献是(1,1)/ 2。对于第二个对角线,(1,2,1)/ 4。第三,(1,3,3,1)/ 8。 。 。等等。
幸运的是,我们可以使用公式(组合学中的“选择”函数)计算每个值的贡献。 2的力量很容易。并且,确定给定单元格与对角线的距离并不太难。
所有这些都可以组合成一个Postgres SQL语句。但是,@ Erwin的解决方案也有效。如果他的解决方案不能满足您的需求,我只想努力调试语句。
答案 2 :(得分:1)
...这里是带有多个嵌入式CTE(tm)的递归CTE:
DROP SCHEMA tmp CASCADE;
CREATE SCHEMA tmp ;
SET search_path=tmp;
CREATE TABLE matrix_data (
yyy integer,
xxx integer,
val numeric);
insert into matrix_data (yyy,xxx,val) values
(1,1,2) , (1,2,2) , (1,3,3) , (1,4,3) , (1,5,4)
, (2,1,4) , (2,2,4) , (2,3,5) , (2,4,6)
, (3,1,3) , (3,2,2) , (3,3,2)
, (4,1,2) , (4,2,1)
, (5,1,1)
;
WITH RECURSIVE rr AS (
WITH xx AS (
SELECT MIN(xxx) AS x0
, MAX(xxx) AS x1
FROM matrix_data
)
, mimax AS (
SELECT generate_series(xx.x0,xx.x1) AS xxx
FROM xx
)
, yy AS (
SELECT MIN(yyy) AS y0
, MAX(yyy) AS y1
FROM matrix_data
)
, mimay AS (
SELECT generate_series(yy.y0,yy.y1) AS yyy
FROM yy
)
, cart AS (
SELECT * FROM mimax mm
JOIN mimay my ON (1=1)
)
, empty AS (
SELECT * FROM cart ca
WHERE NOT EXISTS (
SELECT *
FROM matrix_data nx
WHERE nx.xxx = ca.xxx
AND nx.yyy = ca.yyy
)
)
, hot AS (
SELECT * FROM empty emp
WHERE EXISTS (
SELECT *
FROM matrix_data ex
WHERE ex.xxx = emp.xxx -1
AND ex.yyy = emp.yyy
)
AND EXISTS (
SELECT *
FROM matrix_data ex
WHERE ex.xxx = emp.xxx
AND ex.yyy = emp.yyy -1
)
)
-- UPDATE from here:
SELECT h.xxx,h.yyy, md.val / 2 AS val
FROM hot h
JOIN matrix_data md ON
(md.yyy = h.yyy AND md.xxx = h.xxx-1)
OR (md.yyy = h.yyy-1 AND md.xxx = h.xxx)
UNION ALL
SELECT e.xxx,e.yyy, r.val / 2 AS val
FROM empty e
JOIN rr r ON ( e.xxx = r.xxx+1 AND e.yyy = r.yyy)
OR ( e.xxx = r.xxx AND e.yyy = r.yyy+1 )
)
INSERT INTO matrix_data(yyy,xxx,val)
SELECT DISTINCT yyy,xxx
,SUM(val)
FROM rr
GROUP BY yyy,xxx
;
SELECT * FROM matrix_data
;
新结果:
NOTICE: drop cascades to table tmp.matrix_data
DROP SCHEMA
CREATE SCHEMA
SET
CREATE TABLE
INSERT 0 15
INSERT 0 10
yyy | xxx | val
-----+-----+------------------------
1 | 1 | 2
1 | 2 | 2
1 | 3 | 3
1 | 4 | 3
1 | 5 | 4
2 | 1 | 4
2 | 2 | 4
2 | 3 | 5
2 | 4 | 6
3 | 1 | 3
3 | 2 | 2
3 | 3 | 2
4 | 1 | 2
4 | 2 | 1
5 | 1 | 1
2 | 5 | 5.0000000000000000
5 | 5 | 2.81250000000000000000
4 | 3 | 1.50000000000000000000
3 | 5 | 4.50000000000000000000
5 | 2 | 1.00000000000000000000
3 | 4 | 4.00000000000000000000
5 | 3 | 1.25000000000000000000
4 | 5 | 3.62500000000000000000
4 | 4 | 2.75000000000000000000
5 | 4 | 2.00000000000000000000
(25 rows)
答案 3 :(得分:0)
while (select max(ColumnIndex+RowIndex) from matrix_data)<10
begin
insert matrix_data
select c1.RowIndex, c1.ColumnIndex+1, (c1.MatrixValue+c2.MatrixValue)/2
from matrix_data c1
inner join
matrix_data c2
on c1.ColumnIndex+1=c2.ColumnIndex and c1.RowIndex-1 = c2.RowIndex
where c1.RowIndex+c1.ColumnIndex=(select max(RowIndex+ColumnIndex) from matrix_data)
and c1.ColumnIndex<5
end