递归SQL语句(PostgreSQL 9.1.4)

时间:2012-07-19 09:58:30

标签: sql postgresql recursive-query

PostgreSQL 9.1

业务情况

每个月都有一批特定流程的新帐户。每个批次都可以按月份,帐户数量和帐户总余额来描述。该过程的目标是从客户那里恢复一些平衡。     每个批次都按月单独跟踪(自批次转移到流程以来每月回收的金额)。

目标

我的目标是预测将来会收回多少金额。

数据定义

create table vintage_data (
    granularity date,       /* Month when account entered process*/
    distance_in_months integer, /* Distance in months from date when accounts entered process*/
    entry_accounts integer,     /* Number of accounts that entered process in a given month*/
    entry_amount numeric,       /* Total amount for account that entered process in a given month*/
    recovery_amount numeric     /* Amount recovered in Nth month on accounts that entered process in a given month */
);

示例数据

insert into vintage_data values('2012-01-31',1,200,100000,1000);
insert into vintage_data values('2012-01-31',2,200,100000,2000);
insert into vintage_data values('2012-01-31',3,200,100000,3000);
insert into vintage_data values('2012-01-31',4,200,100000,3500);
insert into vintage_data values('2012-01-31',5,200,100000,3400);
insert into vintage_data values('2012-01-31',6,200,100000,3300);
insert into vintage_data values('2012-02-28',1,250,150000,1200);
insert into vintage_data values('2012-02-28',2,250,150000,1600);
insert into vintage_data values('2012-02-28',3,250,150000,1800);
insert into vintage_data values('2012-02-28',4,250,150000,1200);
insert into vintage_data values('2012-02-28',5,250,150000,1600);
insert into vintage_data values('2012-03-31',1,200,90000,1300);
insert into vintage_data values('2012-03-31',2,200,90000,1200);
insert into vintage_data values('2012-03-31',3,200,90000,1400);
insert into vintage_data values('2012-03-31',4,200,90000,1000);
insert into vintage_data values('2012-04-30',1,300,180000,1600);
insert into vintage_data values('2012-04-30',2,300,180000,1500);
insert into vintage_data values('2012-04-30',3,300,180000,4000);
insert into vintage_data values('2012-05-31',1,400,225000,2200);
insert into vintage_data values('2012-05-31',2,400,225000,6000);
insert into vintage_data values('2012-06-30',1,100,60000,1000);

计算流程

您可以将数据想象为三角矩阵(X值将被预测):

distance_in_months                       1      2     3       4      5      6
granularity entry_accounts  entry_amount
2012-01-31  200             100000       1000   2000   3000   3500   3400   3300
2012-02-28  250             150000       1200   1600   1800   1200   1600   (X-1)
2012-03-31  200              90000       1300   1200   1400   1000   (X0)   (X4)
2012-04-30  300             180000       1600   1500   4000   (X1)   (X5)   (X8)
2012-05-31  400             225000       2200   6000   (X2)   (X6)   (X9)   (X11)
2012-06-30  100              60000       1000   (X3)   (X7)   (X10)  (X12   (X13)

算法

我的目标是预测所有缺失点(未来)。为了说明这个过程,这是X1点的计算

1)使用距离最多为4来获取前三个月的行总数:

2012-01-31  1000+2000+3000+3500=9500 (d4m3)
2012-02-28  1200+1600+1800+1200=5800 (d4m2)
2012-03-31  1300+1200+1400+1000=4900 (d4m1)

2)使用距离最远为3来获取前三个月的行总数:

2012-01-31  1000+2000+3000=6000 (d3m3)
2012-02-28  1200+1600+1800=4600 (d3m2)
2012-03-31  1300+1200+1400=3800 (d3m1)

3)计算距离3和距离4的加权平均运行率(由entry_amount加权):

(d4m3+d4m2+d4m1)/(100000+150000+90000) = (9500+5800+4900)/(100000+150000+90000) = 20200/340000 = 0.0594
(d3m3+d3m2+d3m1)/(100000+150000+90000) = (6000+4600+3800)/(100000+150000+90000) = 14400/340000 = 0.0424

4)计算距离3和距离4之间的变化

((d4m3+d4m2+d4m1)/(100000+150000+90000))/((d3m3+d3m2+d3m1)/(100000+150000+90000)) =
= (20200/340000)/(14400/340000) =
= 0.0594/0.0424 = 1.403 (PredictionRateForX1)

5)使用距离最多3来计算预测月份的行总数:

2012-04-30  1600+1500+4000=7100

6)使用entry_amount计算预测月份的费率

7100/180000 = 0.0394

7)计算X1预测的速率

0.0394 * PredictionRateForX1 = 0.05534

8)计算X1的数量

(0.05534-0.0394)*180000 = 2869.2

问题

问题是如何使用SQL语句计算矩阵的其余部分(从x-1到x13)。很明显,这需要某种递归算法。

2 个答案:

答案 0 :(得分:2)

这是一项艰巨的任务,将其拆分以使其更易于管理。我会把它放在一个带RETURN TABLE的plpgsql函数中:

  1. 使用交叉表查询为“计算过程”矩阵创建临时表 您需要为此安装tablefunc模块。运行(每个数据库一次):

    CREATE EXTENSION tablefunc;
    
  2. 按字段更新临时表字段。

  3. 返回表。
  4. 以下演示功能齐全,并使用PostgreSQL 9.1.4进行了测试。基于问题中提供的表定义:

    -- DROP FUNCTION f_forcast();
    
    CREATE OR REPLACE FUNCTION f_forcast()
      RETURNS TABLE (
      granularity date
     ,entry_accounts numeric
     ,entry_amount numeric
     ,d1 numeric
     ,d2 numeric
     ,d3 numeric
     ,d4 numeric
     ,d5 numeric
     ,d6 numeric) AS
    $BODY$
    BEGIN
    
    --== Create temp table with result of crosstab() ==--
    
    CREATE TEMP TABLE matrix ON COMMIT DROP AS
    SELECT *
    FROM   crosstab (
            'SELECT granularity, entry_accounts, entry_amount
                   ,distance_in_months, recovery_amount
             FROM   vintage_data
             ORDER  BY 1, 2',
    
            'SELECT DISTINCT distance_in_months
             FROM   vintage_data
             ORDER  BY 1')
    AS tbl (
      granularity date
     ,entry_accounts numeric
     ,entry_amount numeric
     ,d1 numeric
     ,d2 numeric
     ,d3 numeric
     ,d4 numeric
     ,d5 numeric
     ,d6 numeric
     );
    
    ANALYZE matrix; -- update statistics to help calculations
    
    
    --== Calculations ==--
    
    -- I implemented the first calculation for X1 and leave the rest to you.
    -- Can probably be generalized in a loop or even a single statement.
    
    UPDATE matrix m
    SET    d4 = (
        SELECT (sum(x.d1) + sum(x.d2) + sum(x.d3) + sum(x.d4))
                /(sum(x.d1) + sum(x.d2) + sum(x.d3)) - 1
                -- removed redundant sum(entry_amount) from equation
        FROM  (
            SELECT *
            FROM   matrix a
            WHERE  a.granularity < m.granularity
            ORDER  BY a.granularity DESC
            LIMIT  3
            ) x
        ) * (m.d1 + m.d2 + m.d3)
    WHERE m.granularity = '2012-04-30';
    
    --- Next update X2 ..
    
    
    --== Return results ==--
    
    RETURN QUERY
    TABLE  matrix
    ORDER  BY 1;
    
    END;
    $BODY$ LANGUAGE plpgsql;
    

    呼叫:

    SELECT * FROM f_forcast();
    

    我已经简化了一点,删除了计算中的一些冗余步骤 该解决方案采用了各种先进技术。你需要了解PostgreSQL的方法来解决这个问题。

答案 1 :(得分:1)

        --
        -- rank the dates.
        -- , also fetch the the fields that seem to depend on them.
        -- (this should have been done in the data model)
        --
CREATE VIEW date_rank AS (
        SELECT uniq.granularity,uniq.entry_accounts,uniq.entry_amount
        , row_number() OVER(ORDER BY 0) AS zrank
        FROM ( SELECT DISTINCT granularity, entry_accounts, entry_amount FROM vintage_data)
             AS uniq
        );

-- SELECT * FROM date_rank ORDER BY granularity;
        --
        -- transform to an x*y matrix, avoiding the date key and the slack columns
        --
CREATE VIEW matrix_data AS (
        SELECT vd.distance_in_months AS xxx
        , dr.zrank AS yyy
        , vd.recovery_amount AS val
        FROM vintage_data vd
        JOIN date_rank dr ON dr.granularity = vd.granularity
        );
-- SELECT * FROM matrix_data;

        --
        -- In order to perform the reversed transformation:
        -- make the view insertable.
        -- INSERTS to matrix_data will percolate back into the vintage_data table
        -- (don't try this at home ;-)
        --
CREATE RULE magic_by_the_plasser AS
        ON INSERT TO matrix_data
        DO INSTEAD (
        INSERT INTO vintage_data (granularity,distance_in_months,entry_accounts,entry_amount,recovery_amount)
        SELECT dr.granularity, new.xxx, dr.entry_accounts, dr.entry_amount, new.val
        FROM date_rank dr
        WHERE dr.zrank = new.yyy
                ;
        );

        --
        -- This CTE creates the weights for a Pascal-triangle
        --
-- EXPLAIN -- ANALYZE
WITH RECURSIVE pascal AS (
        WITH empty AS (
                --
                -- "cart" is a cathesian product of X*Y
                -- its function is similar to a "calendar table":
                -- filling in the missing X,Y pairs, making the matrix "square".
                -- (well: rectangular, but in the given case nX==nY)
                --
                WITH cart AS (
                        WITH mmx AS (
                                WITH xx AS ( SELECT MIN(xxx) AS x0 , MAX(xxx) AS x1 FROM matrix_data)
                                SELECT generate_series(xx.x0,xx.x1) AS xxx
                                FROM xx
                                )
                        , mmy AS (
                                WITH yy AS ( SELECT MIN(yyy) AS y0 , MAX(yyy) AS y1 FROM matrix_data)
                                SELECT generate_series(yy.y0,yy.y1) AS yyy
                                FROM yy
                                )
                        SELECT * FROM mmx
                        JOIN mmy ON (1=1) -- Carthesian product here!
                        )
                --
                -- The (x,y) pairs that are not present in the current matrix
                --
                SELECT * FROM cart ca
                WHERE NOT EXISTS (
                        SELECT *
                        FROM matrix_data nx
                        WHERE nx.xxx = ca.xxx
                        AND nx.yyy = ca.yyy
                        )
                )
        SELECT md.yyy AS src_y
                , md.xxx AS src_x
                , md.yyy AS dst_y
                , md.xxx AS dst_x
                -- The filled-in matrix cells have weight 1
                , 1::numeric AS weight
        FROM matrix_data md
        UNION ALL
        SELECT pa.src_y AS src_y
                , pa.src_x AS src_x
                , em.yyy AS dst_y
                , em.xxx AS dst_x
                -- the derived matrix cells inherit weight/2 from both their parents
                , (pa.weight/2) AS weight
        FROM pascal pa
        JOIN empty em
                ON ( em.yyy = pa.dst_y+1 AND em.xxx = pa.dst_x)
                OR ( em.yyy = pa.dst_y AND em.xxx = pa.dst_x+1 )
        )
INSERT INTO matrix_data(yyy,xxx,val)
SELECT pa.dst_y,pa.dst_x
        ,SUM(ma.val*pa.weight)
FROM pascal pa
JOIN matrix_data ma ON pa.src_y = ma.yyy AND pa.src_x = ma.xxx
        -- avoid the filled-in matrix cells (which map to themselves)
WHERE NOT (pa.src_y = pa.dst_y AND pa.src_x = pa.dst_x)
GROUP BY pa.dst_y,pa.dst_x
        ;

        --
        -- This will also get rid of the matrix_data view and the rule.
        --
DROP VIEW date_rank CASCADE;
-- SELECT * FROM matrix_data ;

SELECT * FROM vintage_data ORDER BY granularity, distance_in_months;

结果:

NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "vintage_data_pkey" for table "vintage_data"
CREATE TABLE
NOTICE:  ALTER TABLE / ADD UNIQUE will create implicit index "mx_xy" for table "vintage_data"
ALTER TABLE
INSERT 0 21
VACUUM
CREATE VIEW
CREATE VIEW
CREATE RULE
INSERT 0 15
NOTICE:  drop cascades to view matrix_data
DROP VIEW
 granularity | distance_in_months | entry_accounts | entry_amount |      recovery_amount      
-------------+--------------------+----------------+--------------+---------------------------
 2012-01-31  |                  1 |            200 |       100000 |                      1000
 2012-01-31  |                  2 |            200 |       100000 |                      2000
 2012-01-31  |                  3 |            200 |       100000 |                      3000
 2012-01-31  |                  4 |            200 |       100000 |                      3500
 2012-01-31  |                  5 |            200 |       100000 |                      3400
 2012-01-31  |                  6 |            200 |       100000 |                      3300
 2012-02-28  |                  1 |            250 |       150000 |                      1200
 2012-02-28  |                  2 |            250 |       150000 |                      1600
 2012-02-28  |                  3 |            250 |       150000 |                      1800
 2012-02-28  |                  4 |            250 |       150000 |                      1200
 2012-02-28  |                  5 |            250 |       150000 |                      1600
 2012-02-28  |                  6 |            250 |       150000 | 2381.25000000000000000000
 2012-03-31  |                  1 |            200 |        90000 |                      1300
 2012-03-31  |                  2 |            200 |        90000 |                      1200
 2012-03-31  |                  3 |            200 |        90000 |                      1400
 2012-03-31  |                  4 |            200 |        90000 |                      1000
 2012-03-31  |                  5 |            200 |        90000 | 2200.00000000000000000000
 2012-03-31  |                  6 |            200 |        90000 | 2750.00000000000000000000
 2012-04-30  |                  1 |            300 |       180000 |                      1600
 2012-04-30  |                  2 |            300 |       180000 |                      1500
 2012-04-30  |                  3 |            300 |       180000 |                      4000
 2012-04-30  |                  4 |            300 |       180000 | 2500.00000000000000000000
 2012-04-30  |                  5 |            300 |       180000 | 2350.00000000000000000000
 2012-04-30  |                  6 |            300 |       180000 | 2550.00000000000000000000
 2012-05-31  |                  1 |            400 |       225000 |                      2200
 2012-05-31  |                  2 |            400 |       225000 |                      6000
 2012-05-31  |                  3 |            400 |       225000 | 5000.00000000000000000000
 2012-05-31  |                  4 |            400 |       225000 | 3750.00000000000000000000
 2012-05-31  |                  5 |            400 |       225000 | 3050.00000000000000000000
 2012-05-31  |                  6 |            400 |       225000 | 2800.00000000000000000000
 2012-06-30  |                  1 |            100 |        60000 |                      1000
 2012-06-30  |                  2 |            100 |        60000 | 3500.00000000000000000000
 2012-06-30  |                  3 |            100 |        60000 | 4250.00000000000000000000
 2012-06-30  |                  4 |            100 |        60000 | 4000.00000000000000000000
 2012-06-30  |                  5 |            100 |        60000 | 3525.00000000000000000000
 2012-06-30  |                  6 |            100 |        60000 | 3162.50000000000000000000
(36 rows)