我试图改变从两个数组中的数据绘制的线的颜色(例如ax.plot(x,y)
)。随着x
和y
的索引增加,颜色会有所不同。我基本上试图捕获数组x
和y
中数据的自然“时间”参数化。
在一个完美的世界里,我想要像:
fig = pyplot.figure()
ax = fig.add_subplot(111)
x = myXdata
y = myYdata
# length of x and y is 100
ax.plot(x,y,color=[i/100,0,0]) # where i is the index into x (and y)
生成一条颜色从黑色到深红色变为亮红色的线条。
我已经看到examples适用于绘制由某个'time'数组显式参数化的函数,但我无法使用原始数据...
答案 0 :(得分:12)
第二个例子是你想要的那个...我编辑它以适合你的例子,但更重要的是阅读我的评论以了解发生了什么:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
x = myXdata
y = myYdata
t = np.linspace(0,1,x.shape[0]) # your "time" variable
# set up a list of (x,y) points
points = np.array([x,y]).transpose().reshape(-1,1,2)
print points.shape # Out: (len(x),1,2)
# set up a list of segments
segs = np.concatenate([points[:-1],points[1:]],axis=1)
print segs.shape # Out: ( len(x)-1, 2, 2 )
# see what we've done here -- we've mapped our (x,y)
# points to an array of segment start/end coordinates.
# segs[i,0,:] == segs[i-1,1,:]
# make the collection of segments
lc = LineCollection(segs, cmap=plt.get_cmap('jet'))
lc.set_array(t) # color the segments by our parameter
# plot the collection
plt.gca().add_collection(lc) # add the collection to the plot
plt.xlim(x.min(), x.max()) # line collections don't auto-scale the plot
plt.ylim(y.min(), y.max())