嗨,我有一个家庭作业,我需要在两小时内实现两条单行道的交叉路口。我需要调整相位以理想地每个队列少于5辆车,9也是可以接受的。
这一切都有效,除了某些事情与我的阶段实施的方式不一致,我似乎无法理解这个问题。我能得到的绝对最好的是一个队列为0或1,另一个队列为40+。我似乎无法让他们两个都在9岁以下。我已经把问题归结为我的阶段检查,但想不出办法解决它。据我所知,我想稍微偏爱Q1,因为汽车到达的速度略快于第二季度。
提前感谢您的帮助。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
struct Node {
int data;
Node *next;
};
class Queue {
private:
Node *listpointer;
public:
Queue();
~Queue();
void push(int newthing);
void pop();
int top();
bool isEmpty();
int queueCount();
void Queue::popTwo();
bool Queue::twoOrMore();
};
Queue::Queue() {
//constructor
listpointer = NULL;
}
Queue::~Queue() {
//destructor
}
void Queue::push(int newthing) {
//place the new thing on top of the Queue
Node *temp;
temp = new Node;
temp->data = newthing;
temp->next = listpointer;
listpointer = temp;
}
void Queue::pop() {
//remove top item from the Queue
Node *p;
p = listpointer;
if (listpointer != NULL) {
listpointer = listpointer->next;
delete p;
}
}
int Queue::top() {
//return the value of the top item
return listpointer->data;
}
bool Queue::isEmpty() {
//returns true if the Queue is empty
if (listpointer == NULL) {
return true;
}
return false;
}
int Queue::queueCount() {
Node *temp;
int count = 0;
temp = listpointer;
while (temp != NULL) {
++count;
temp = temp->next;
}
return count;
delete temp;
}
void Queue::popTwo() {
// remove the 2 top items from the stack
Node *p;
p = listpointer;
if (listpointer != NULL) {
listpointer = listpointer->next;
delete p;
}
p = listpointer;
if (listpointer != NULL) {
listpointer = listpointer->next;
delete p;
}
}
bool Queue::twoOrMore() {
// return true if the stack has at least two items
if(listpointer==NULL || listpointer->next==NULL) return false;
else return true;
}
//implement/copy your queue structure and functions above
//then, declare two instances:
//Queue Q1, Q2;
//if you want, make a separate function to change the
//signals between the queues (either green or red)
//When the signal changes, one queue only is allowed to delete elements
Queue Q1, Q2;
int Q1phase = 30; //initial attempt
int Q2phase = 60; //initial attempt
const int Q1arrive = 18; //fixed
const int Q2arrive = 22; //fixed
const int leave_rate = 10; //fixed, one car leaves either queue every 10 seconds
int car_id=0;
int clock=0;
bool Q1_green, Q2_green; //indicates which queue is opened, only one at a time
int main(int argc, char **argv) {
//if(argc!=3) {printf("needs: Q1phase Q2phase\n"); exit(0); }
//Q1phase=atoi(argv[1]);
//Q2phase=atoi(argv[2]);
if(Q1phase < 30 || Q2phase < 30) {printf("Minimum time for each queue to be closed is 30 seconds\n"); exit(0);}
clock = 0;
car_id = 0;
Q1_green = true;
Q2_green = false;
int length_Q1, length_Q2;
length_Q1 = 0;
length_Q2 = 0;
while (clock < 7200) {
clock++;
if (clock % Q1arrive == 0) {
car_id++;
//car_id join Q1
Q1.push(car_id);
length_Q1 = Q1.queueCount();
}
if (clock % Q2arrive == 0) {
car_id++;
//or car_id join Q2
Q2.push(car_id);
length_Q2 = Q2.queueCount();
}
if ((clock % Q1phase == 0) || (clock % Q2phase == 0)) {
if (Q1_green == true) {
Q1_green = false;
Q2_green = true;
} else {
Q1_green = true;
Q2_green = false;
}
}
if (clock % leave_rate == 0) {
if (Q1_green == true) {
Q1.pop();
length_Q1 = Q1.queueCount();
}
if (Q2_green == true) {
Q2.pop();
length_Q2 = Q2.queueCount();
}
}
//ChangeSignal();//every second, check if it is time to change signals (phasing is important!)
//After the signal change:
//verify which queue is opened
//either Q1 or Q2 will have the chance to delete one element (Q.Leave())
//
printf("at time %d:\nthe current length of Q1 is %d\n",clock,length_Q1);
printf("the current length of Q2 is %d\n", length_Q2);
//at the end of the simulation, both queues should have few cars
}
}
答案 0 :(得分:0)
您的总到达率超过了离开率,因此汽车将不得不积压。
总到达率为1/22 + 1/18 =~ 0.1010
辆/秒。这超过了每秒0.1
辆汽车的停车率。
灯光每30秒更改一次(Q1phase
),因为Q2phase
是Q1phase
的倍数。所以基本上队列的占空比相等。
汽车从每个队列中排出,占总速率的一半:一个队列为0.05,另一个队列为0.05(1/20)。
请注意,1/20的假期率小于1/18。所以1/18到达的队列将积压。 1/20的离开率大于1/22,因此具有1/22到达率的队列不会积压。
这种微小的差异并不是很轻微!到达率超过休假率或不超过休假率的世界存在差异。
哦,以下是如何计算积压队列中的汽车:
抵达率:1/18。 出发率:1/20(1/10的一半) 总时间:7200秒:
7200 *(1/18) - 7200 *(1/20)== ????
<强>:)强>