通过Python函数跟踪*最大*内存使用情况

时间:2012-03-24 10:32:39

标签: python memory profiling

我想知道在调用函数期间分配的最大RAM量是多少(在Python中)。关于跟踪RAM使用情况的SO还有其他问题:

Which Python memory profiler is recommended?

How do I profile memory usage in Python?

但是这些似乎允许您在调用heap()方法(在guppy的情况下)时更多地跟踪内存使用情况。但是,我想跟踪的是外部库中的一个函数,我无法修改它,并且它会增长以使用大量的RAM,但是一旦函数执行完成就会释放它。有没有办法找出函数调用期间使用的RAM总量是多少?

8 个答案:

答案 0 :(得分:25)

这个问题看起来很有趣,这让我有理由去研究Guppy / Heapy,因为我感谢你。

我尝试了大约2个小时让Heapy监控一个函数调用/进程而不用运气来修改它的源代码。

我确实找到了使用内置Python库resource完成任务的方法。请注意,文档未指出RU_MAXRSS值返回的内容。另一个以KB为单位的SO用户noted。在下面的测试代码中运行Mac OSX 7.3并观察我的系统资源,我相信返回的值是 Bytes ,而不是kBytes。

关于我如何使用resource库监视库调用的10000英尺视图是在一个单独的(可监视的)线程中启动该函数,并在主线程中跟踪该进程的系统资源。下面我有两个你需要运行的文件来测试它。

图书馆资源监控 - whatever_you_want.py

import resource
import time

from stoppable_thread import StoppableThread


class MyLibrarySniffingClass(StoppableThread):
    def __init__(self, target_lib_call, arg1, arg2):
        super(MyLibrarySniffingClass, self).__init__()
        self.target_function = target_lib_call
        self.arg1 = arg1
        self.arg2 = arg2
        self.results = None

    def startup(self):
        # Overload the startup function
        print "Calling the Target Library Function..."

    def cleanup(self):
        # Overload the cleanup function
        print "Library Call Complete"

    def mainloop(self):
        # Start the library Call
        self.results = self.target_function(self.arg1, self.arg2)

        # Kill the thread when complete
        self.stop()

def SomeLongRunningLibraryCall(arg1, arg2):
    max_dict_entries = 2500
    delay_per_entry = .005

    some_large_dictionary = {}
    dict_entry_count = 0

    while(1):
        time.sleep(delay_per_entry)
        dict_entry_count += 1
        some_large_dictionary[dict_entry_count]=range(10000)

        if len(some_large_dictionary) > max_dict_entries:
            break

    print arg1 + " " +  arg2
    return "Good Bye World"

if __name__ == "__main__":
    # Lib Testing Code
    mythread = MyLibrarySniffingClass(SomeLongRunningLibraryCall, "Hello", "World")
    mythread.start()

    start_mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
    delta_mem = 0
    max_memory = 0
    memory_usage_refresh = .005 # Seconds

    while(1):
        time.sleep(memory_usage_refresh)
        delta_mem = (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) - start_mem
        if delta_mem > max_memory:
            max_memory = delta_mem

        # Uncomment this line to see the memory usuage during run-time 
        # print "Memory Usage During Call: %d MB" % (delta_mem / 1000000.0)

        # Check to see if the library call is complete
        if mythread.isShutdown():
            print mythread.results
            break;

    print "\nMAX Memory Usage in MB: " + str(round(max_memory / 1000.0, 3))

可停止线程 - stoppable_thread.py

import threading
import time

class StoppableThread(threading.Thread):
    def __init__(self):
        super(StoppableThread, self).__init__()
        self.daemon = True
        self.__monitor = threading.Event()
        self.__monitor.set()
        self.__has_shutdown = False

    def run(self):
        '''Overloads the threading.Thread.run'''
        # Call the User's Startup functions
        self.startup()

        # Loop until the thread is stopped
        while self.isRunning():
            self.mainloop()

        # Clean up
        self.cleanup()

        # Flag to the outside world that the thread has exited
        # AND that the cleanup is complete
        self.__has_shutdown = True

    def stop(self):
        self.__monitor.clear()

    def isRunning(self):
        return self.__monitor.isSet()

    def isShutdown(self):
        return self.__has_shutdown


    ###############################
    ### User Defined Functions ####
    ###############################

    def mainloop(self):
        '''
        Expected to be overwritten in a subclass!!
        Note that Stoppable while(1) is handled in the built in "run".
        '''
        pass

    def startup(self):
        '''Expected to be overwritten in a subclass!!'''
        pass

    def cleanup(self):
        '''Expected to be overwritten in a subclass!!'''
        pass

答案 1 :(得分:18)

可以使用memory_profiler执行此操作。函数memory_usage返回值列表,这些值表示一段时间内的内存使用情况(默认情况下为.1秒的块)。如果您需要最大值,请使用该列表的最大值。小例子:

from memory_profiler import memory_usage
from time import sleep

def f():
    # a function that with growing
    # memory consumption
    a = [0] * 1000
    sleep(.1)
    b = a * 100
    sleep(.1)
    c = b * 100
    return a

mem_usage = memory_usage(f)
print('Memory usage (in chunks of .1 seconds): %s' % mem_usage)
print('Maximum memory usage: %s' % max(mem_usage))

在我的情况下(memory_profiler 0.25),如果输出以下输出:

Memory usage (in chunks of .1 seconds): [45.65625, 45.734375, 46.41015625, 53.734375]
Maximum memory usage: 53.734375

答案 2 :(得分:5)

这似乎适用于Windows。不了解其他操作系统。

In [50]: import os

In [51]: import psutil

In [52]: process = psutil.Process(os.getpid())

In [53]: process.get_ext_memory_info().peak_wset
Out[53]: 41934848

答案 3 :(得分:2)

您可以使用python库资源来获取内存。

import resource
resource.getrusage(resource.RUSAGE_SELF).ru_maxrss

它将以千字节为单位提供内存使用量,以MB为单位转换为1000。

答案 4 :(得分:1)

@Vader B的答案有所改善(因为它对我来说开箱即用):

1byte = 1glyph

答案 5 :(得分:1)

在Linux系统上读取free信息的来源/proc/meminfo

~ head /proc/meminfo
MemTotal:        4039168 kB
MemFree:         2567392 kB
MemAvailable:    3169436 kB
Buffers:           81756 kB
Cached:           712808 kB
SwapCached:            0 kB
Active:           835276 kB
Inactive:         457436 kB
Active(anon):     499080 kB
Inactive(anon):    17968 kB

我创建了一个装饰器类来衡量函数的内存消耗。

class memoryit:

    def FreeMemory():
        with open('/proc/meminfo') as file:
            for line in file:
                if 'MemFree' in line:
                    free_memKB = line.split()[1]
                    return (float(free_memKB)/(1024*1024))    # returns GBytes float

    def __init__(self, function):    # Decorator class to print the memory consumption of a 
        self.function = function     # function/method after calling it a number of iterations

    def __call__(self, *args, iterations = 1, **kwargs):
        before = memoryit.FreeMemory()
        for i in range (iterations):
            result = self.function(*args, **kwargs)
        after = memoryit.FreeMemory()
        print ('%r memory used: %2.3f GB' % (self.function.__name__, (before - after) / iterations))
        return result

衡量消费的功能:

@memoryit
def MakeMatrix (dim):
    matrix = []   
    for i in range (dim):
        matrix.append([j for j in range (dim)])
    return (matrix)

用法:

print ("Starting memory:", memoryit.FreeMemory()) 
m = MakeMatrix(10000)    
print ("Ending memory:", memoryit.FreeMemory() )

打印输出:

Starting memory: 10.58599853515625
'MakeMatrix' memory used: 3.741 GB
Ending memory: 6.864116668701172

答案 6 :(得分:0)

标准Unix实用程序time跟踪进程的最大内存使用情况以及程序的其他有用统计信息。

示例输出({maxresident是最大内存使用量,以千字节为单位。):

> time python ./scalabilty_test.py
45.31user 1.86system 0:47.23elapsed 99%CPU (0avgtext+0avgdata 369824maxresident)k
0inputs+100208outputs (0major+99494minor)pagefaults 0swaps

答案 7 :(得分:-2)

也一直在努力完成这项任务。在尝试了Adam的psutil和方法之后,我写了一个函数(信用于Adam Lewis)来测量特定函数使用的内存。人们可能会发现抓取和使用更容易。

1)measure_memory_usage

2)test measure_memory_usage

我发现关于线程和覆盖超类的材料真的有助于理解Adam在脚本中做了什么。抱歉,由于我的" 2链接"我无法发布链接。最大限制。