我有数据,我在计算护理事件(如ER访问)。诀窍是,我无法计算每次访问,因为有时第二次或第三次访问实际上是先前问题的后续行动。因此,我已经被指定通过使用30天的“清洁期”或“停电期”来计算访问次数,这样,我会按患者(最小日期)查找第一个事件(访问1),我计算该事件,然后应用规则,以便不计算在第一个事件发生后30天内发生的任何访问。在那30天窗口过后,我可以开始寻找第二次访问(访问2),计算一次,然后再次应用30天黑色(不计算访问#2后30天内发生的任何访问)。 ..洗,冲洗,重复...
我已经将一个非常草率的解决方案整合在一起,需要大量的保姆和手动检查步骤(见下文)。我必须相信有更好的方法。救命!
data1 <- structure(list(ID = structure(c(2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L), .Label = c("", "patient1", "patient2",
"patient3"), class = "factor"), Date = structure(c(14610, 14610,
14627, 14680, 14652, 14660, 14725, 15085, 15086, 14642, 14669,
14732, 14747, 14749), class = "Date"), test = c(1L, 1L, 1L, 2L,
1L, 1L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 2L)), .Names = c("ID", "Date",
"test"), class = "data.frame", row.names = c(NA, 14L))
library(doBy)
## create a table of first events
step1 <- summaryBy(Date~ID, data = data1, FUN=min)
step1$Date30 <- step1$Date.min+30
step2 <- merge(data1, step1, by.x="ID", by.y="ID")
## use an ifelse to essentially remove any events that shouldn't be counted
step2$event <- ifelse(as.numeric(step2$Date) >= step2$Date.min & as.numeric(step2$Date) <= step2$Date30, 0, 1)
## basically repeat steps above until I dont capture any more events
## there just has to be a better way
data3 <- step2[step2$event==1,]
data3<- data3[,1:3]
step3 <- summaryBy(Date~ID, data = data3, FUN=min)
step3$Date30 <- step3$Date.min+30
step4 <- merge(data3, step3, by.x="ID", by.y="ID")
step4$event <- ifelse(as.numeric(step4$Date) >= step4$Date.min & as.numeric(step4$Date) <= step4$Date30, 0, 1)
data4 <- step4[step4$event==1,]
data4<- data4[,1:3]
step5 <- summaryBy(Date~ID, data = data4, FUN=min)
step5$Date30 <- step5$Date.min+30
## then I rbind the "keepers"
## in this case steps 1 and 3 above
final <- rbind(step1,step3, step5)
## then reformat
final <- final[,1:2]
final$Date.min <- as.Date(final$Date.min,origin="1970-01-01")
## again, extremely clumsy, but it works... HELP! :)
答案 0 :(得分:6)
此解决方案是无循环的,仅使用基数R.它生成一个逻辑向量ok
,用于选择data1
的可接受行。
ave
分别为每位患者运行指定的匿名函数。
我们定义一个状态向量,包含当前日期和未考虑其他日期的期间的开始。每个日期由as.numeric(x)
表示,其中x
是日期。 step
获取状态向量和当前日期并更新状态向量。 Reduce
在数据上运行它,然后我们只采用最小和当前日期相同且当前日期不重复的结果。
step <- function(init, curdate) {
c(curdate, if (curdate > init[2] + 30) curdate else init[2])
}
ok <- !!ave(as.numeric(data1$Date), paste(data1$ID), FUN = function(d) {
x <- do.call("rbind", Reduce(step, d, c(-Inf, 0), acc = TRUE))
x[-1,1] == x[-1,2] & !duplicated(x[-1,1])
})
data1[ok, ]
答案 1 :(得分:2)
由于这种操作不直接且容易出错, 我会写一个单独的函数来在停电期间丢弃事件。 该函数包含一个循环, 这基本上是你手工做的, 直到没有什么可做的。
blackout <- function(dates, period=30) {
dates <- sort(dates)
while( TRUE ) {
spell <- as.numeric(diff(dates)) <= period
if(!any(spell)) { return(dates) }
i <- which(spell)[1] + 1
dates <- dates[-i]
}
}
# Tests
stopifnot(
length(
blackout( seq.Date(Sys.Date(), Sys.Date()+50, by=1) )
) == 2
)
stopifnot(
length(
blackout( seq.Date(Sys.Date(), by=31, length=5) )
) == 5
)
可以如下使用。
library(plyr)
ddply(data1, "ID", summarize, Date=blackout(Date))
答案 2 :(得分:1)
怎么样
do.call('rbind', lapply(split(data1, factor(data1$ID)), function(x) (x <- x[order(x$Date),])[c(T, diff(x$Date) > 30),]))