如何并行化一个简单的Python循环?

时间:2012-03-20 11:42:43

标签: python parallel-processing

这可能是一个微不足道的问题,但我如何在python中并行化以下循环?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

我知道如何在Python中启动单线程,但我不知道如何“收集”结果。

多个过程也可以 - 对于这种情况最简单的事情。我正在使用当前的Linux,但代码也应该在Windows和Mac上运行。

并行化此代码的最简单方法是什么?

15 个答案:

答案 0 :(得分:135)

由于全局解释器锁定(GIL),在CPython上使用多个线程不会为纯Python代码提供更好的性能。我建议改为使用multiprocessing模块:

pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

请注意,这在交互式解释器中不起作用。

为了避免围绕GIL进行通常的FUD:无论如何使用线程都没有任何优势。你希望在这里使用进程,而不是线程,因为它们避免了一大堆问题。

答案 1 :(得分:45)

为了并行化一个简单的for循环,joblib为多处理的原始使用带来了很多价值。不仅是短语法,而且还有迭代的透明聚合,当它们非常快(消除开销)或捕获子进程的回溯时,可以有更好的错误报告。

免责声明:我是joblib的原作者。

答案 2 :(得分:36)

  

并行化此代码的最简单方法是什么?

我非常喜欢concurrent.futures,可以在Python3 since version 3.2中找到 - 并通过backport到PyPi上的2.6和2.7。

您可以使用线程或进程并使用完全相同的界面。

多处理

将它放在一个文件中 - futuretest.py:

import concurrent.futures
import time, random               # add some random sleep time

offset = 2                        # you don't supply these so
def calc_stuff(parameter=None):   # these are examples.
    sleep_time = random.choice([0, 1, 2, 3, 4, 5])
    time.sleep(sleep_time)
    return parameter / 2, sleep_time, parameter * parameter

def procedure(j):                 # just factoring out the
    parameter = j * offset        # procedure
    # call the calculation
    return calc_stuff(parameter=parameter)

def main():
    output1 = list()
    output2 = list()
    output3 = list()
    start = time.time()           # let's see how long this takes

    # we can swap out ProcessPoolExecutor for ThreadPoolExecutor
    with concurrent.futures.ProcessPoolExecutor() as executor:
        for out1, out2, out3 in executor.map(procedure, range(0, 10)):
            # put results into correct output list
            output1.append(out1)
            output2.append(out2)
            output3.append(out3)
    finish = time.time()
    # these kinds of format strings are only available on Python 3.6:
    # time to upgrade!
    print(f'original inputs: {repr(output1)}')
    print(f'total time to execute {sum(output2)} = sum({repr(output2)})')
    print(f'time saved by parallelizing: {sum(output2) - (finish-start)}')
    print(f'returned in order given: {repr(output3)}')

if __name__ == '__main__':
    main()

这是输出:

$ python3 -m futuretest
original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
total time to execute 33 = sum([0, 3, 3, 4, 3, 5, 1, 5, 5, 4])
time saved by parallellizing: 27.68999981880188
returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

多线程

现在将ProcessPoolExecutor更改为ThreadPoolExecutor,然后再次运行该模块:

$ python3 -m futuretest
original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
total time to execute 19 = sum([0, 2, 3, 5, 2, 0, 0, 3, 3, 1])
time saved by parallellizing: 13.992000102996826
returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

现在你已经完成了多线程和多处理!

关于性能的注意事项并同时使用它们。

抽样太小,无法比较结果。

但是,我怀疑多线程通常比多处理更快,特别是在Windows上,因为Windows不支持分配,所以每个新进程都需要花时间启动。在Linux或Mac上,他们可能会更接近。

您可以在多个进程中嵌套多个线程,但建议不要使用多个线程来分离多个进程。

答案 3 :(得分:15)

from joblib import Parallel, delayed
import multiprocessing

inputs = range(10) 
def processInput(i):
    return i * i

num_cores = multiprocessing.cpu_count()

results = Parallel(n_jobs=num_cores)(delayed(processInput)(i) for i in inputs)
print(results)

以上在我的机器上运行得很漂亮(Ubuntu,包joblib已预先安装,但可以通过pip install joblib安装)。

取自https://blog.dominodatalab.com/simple-parallelization/

答案 4 :(得分:6)

使用Ray有很多优点:

  • 除了多个内核(具有相同的代码)之外,您还可以并行处理多台计算机。
  • 通过共享内存(和零拷贝序列化)有效地处理数字数据。
  • 具有分布式调度的高任务吞吐量。
  • 容错。

以您为例,您可以启动Ray并定义一个远程功能

import ray

ray.init()

@ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
    # Do something.
    return 1, 2, 3

然后并行调用

output1, output2, output3 = [], [], []

# Launch the tasks.
for j in range(10):
    id1, id2, id3 = calc_stuff.remote(parameter=j)
    output1.append(id1)
    output2.append(id2)
    output3.append(id3)

# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)

要在集群上运行相同的示例,唯一会改变的行是对ray.init()的调用。相关文档可以在here中找到。

请注意,我正在帮助开发Ray。

答案 5 :(得分:3)

为什么不使用线程和一个互斥锁来保护一个全局列表?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

请记住,您将与最慢的线程一样快

答案 6 :(得分:2)

我发现joblib对我很有用。请参见以下示例:

from joblib import Parallel, delayed
def yourfunction(k):   
    s=3.14*k*k
    print "Area of a circle with a radius ", k, " is:", s

element_run = Parallel(n_jobs=-1)(delayed(yourfunction)(k) for k in range(1,10))

n_jobs = -1:使用所有可用的内核

答案 7 :(得分:1)

在Python中实现多处理和并行/分布式计算时,这可能很有用。

YouTube tutorial on using techila package

Techila是一个分布式计算中间件,它使用techila软件包直接与Python集成。包中的桃函数可用于并行化循环结构。 (以下代码段来自Techila Community Forums

techila.peach(funcname = 'theheavyalgorithm', # Function that will be called on the compute nodes/ Workers
    files = 'theheavyalgorithm.py', # Python-file that will be sourced on Workers
    jobs = jobcount # Number of Jobs in the Project
    )

答案 8 :(得分:1)

非常简单的并行处理示例是

from multiprocessing import Process

output1 = list()
output2 = list()
output3 = list()

def yourfunction():
    for j in range(0, 10):
        # calc individual parameter value
        parameter = j * offset
        # call the calculation
        out1, out2, out3 = calc_stuff(parameter=parameter)

        # put results into correct output list
        output1.append(out1)
        output2.append(out2)
        output3.append(out3)

if __name__ == '__main__':
    p = Process(target=pa.yourfunction, args=('bob',))
    p.start()
    p.join()

答案 9 :(得分:1)

假设我们有一个异步函数

async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
    # Do some async procesing    

那需要在大型阵列上运行。一些属性被传递给程序,一些属性从数组中的dictionary元素的属性中使用。

async def process_students(self, student_name: str, loop):
    market = sys.argv[2]
    subjects = [...] #Some large array
    batchsize = 5
    for i in range(0, len(subjects), batchsize):
        batch = subjects[i:i+batchsize]
        await asyncio.gather(*(self.work_async(student_name,
                                           sub['Code'],
                                           loop)
                       for sub in batch))

答案 10 :(得分:1)

达斯克期货;我很惊讶还没有人提到它。 . .

from dask.distributed import Client

client = Client(n_workers=8) # In this example I have 8 cores and processes (can also use threads if desired)

def my_function(i):
    output = <code to execute in the for loop here>
    return output

futures = []

for i in <whatever you want to loop across here>:
    future = client.submit(my_function, i)
    futures.append(future)

results = client.gather(futures)
client.close()

答案 11 :(得分:0)

您可以使用 asyncio 。 (可以在here中找到文档)。它被用作多个Python异步框架的基础,这些框架提供了高性能的网络和Web服务器,数据库连接库,分布式任务队列等。此外,它还具有高级和低级API来解决任何类型的问题。

import asyncio

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, *kwargs)

    return wrapped

@background
def your_function(argument):
    #code

现在,此函数将在每次调用时并行运行,而不会使主程序进入等待状态。您也可以使用它并行化循环。当调用for循环时,尽管循环是顺序的,但是每次迭代都在解释器到达主程序后与主程序并行运行。 例如:

@background
def your_function(argument):
    time.sleep(5)
    print('function finished for '+str(argument))


for i in range(10):
    your_function(i)


print('loop finished')

这将产生以下输出:

loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1

答案 12 :(得分:0)

concurrenttqdm library 包装器是并行化长时间运行代码的好方法。 tqdm 通过智能进度表提供当前进度和剩余时间的反馈,我发现这对于长时间计算非常有用。

循环可以重写为通过简单调用 SELECT 作为并发线程运行,或者通过简单调用 thread_map 作为并发多进程运行:

process_map

答案 13 :(得分:-1)

看看这个;

http://docs.python.org/library/queue.html

这可能不是正确的方法,但我会做类似的事情;

实际代码;

from multiprocessing import Process, JoinableQueue as Queue 

class CustomWorker(Process):
    def __init__(self,workQueue, out1,out2,out3):
        Process.__init__(self)
        self.input=workQueue
        self.out1=out1
        self.out2=out2
        self.out3=out3
    def run(self):
            while True:
                try:
                    value = self.input.get()
                    #value modifier
                    temp1,temp2,temp3 = self.calc_stuff(value)
                    self.out1.put(temp1)
                    self.out2.put(temp2)
                    self.out3.put(temp3)
                    self.input.task_done()
                except Queue.Empty:
                    return
                   #Catch things better here
    def calc_stuff(self,param):
        out1 = param * 2
        out2 = param * 4
        out3 = param * 8
        return out1,out2,out3
def Main():
    inputQueue = Queue()
    for i in range(10):
        inputQueue.put(i)
    out1 = Queue()
    out2 = Queue()
    out3 = Queue()
    processes = []
    for x in range(2):
          p = CustomWorker(inputQueue,out1,out2,out3)
          p.daemon = True
          p.start()
          processes.append(p)
    inputQueue.join()
    while(not out1.empty()):
        print out1.get()
        print out2.get()
        print out3.get()
if __name__ == '__main__':
    Main()

希望有所帮助。

答案 14 :(得分:-1)

感谢@iuryxavier

from multiprocessing import Pool
from multiprocessing import cpu_count


def add_1(x):
    return x + 1

if __name__ == "__main__":
    pool = Pool(cpu_count())
    results = pool.map(add_1, range(10**12))
    pool.close()  # 'TERM'
    pool.join()   # 'KILL'