我有一个包含来自多个仪器运行的20个文本文件的文件夹。数据部分都具有相同的格式
22/05/11; 16:03:28; 0.000; 6.079; 31.41; 84881; 25.60; E0;
22/05/11; 16:03:29; 0.017; 6.063; 31.44; 84868; 25.60; E0;
22/05/11; 16:03:30; 0.034; 6.079; 31.41; 84868; 25.60; E0;
22/05/11; 16:03:31; 0.051; 6.079; 31.41; 84868; 25.60; E0;
22/05/11; 16:03:32; 0.068; 6.068; 31.43; 84868; 25.60; E0;
22/05/11; 16:03:33; 0.085; 6.068; 31.43; 84881; 25.60; E0;
22/05/11; 16:03:34; 0.102; 6.079; 31.41; 84874; 25.60; E0;
我想要做的是读取我文件夹中的每个文件,运行线性回归,并拉出斜率和R2值。
截至目前,这是我为单个文件执行此操作的代码。
O2=read.table("Coral 1_Dark.txt",skip=58, sep=";",header=FALSE)
names(O2)<-c("Date","Time","Log_Time","O2_mgL","Phase","Amp","Temp C","Error Message")
O2$id<-seq_len(nrow(O2)) #creates unique ID for each measurement (use for regression)
attach(O2)
fit=lm(O2_mgL~id)
summary(fit)
运行此代码后,我手动输入斜率和R2数据。
现在我可以使用
创建一个包含我感兴趣的所有文件的变量F=list.files()
这给了我所有20个文件
[1] "Coral 1_Dark.txt" "Coral 1_Light.txt" "Coral 10_Dark.txt" "Coral 10_Light.txt" "Coral 2_Dark.txt"
[6] "Coral 2_Light.txt" "Coral 3_Dark.txt" "Coral 3_Light.txt" "Coral 4_Dark.txt" "Coral 4_Light.txt"
[11] "Coral 5_Dark.txt" "Coral 5_Light.txt" "Coral 6_Dark.txt" "Coral 6_Light.txt" "Coral 7_Dark.txt"
[16] "Coral 7_Light.txt" "Coral 8_Dark.txt" "Coral 8_Light.txt" "Coral 9_Dark.txt" "Coral 9_Light.txt"
我想最终得到的就是这样的所有20个文件
Coral Slope R2
Coral 1_Dark 0.23 98.3
Coral 2_Dark 0.33 99.3
ECT
有什么建议吗?我从来没有使用任何应用函数或任何类型的循环 - 但我认为这将改变.....
答案 0 :(得分:3)
这样的东西?
wd <- "C:/Data"
files <- dir(wd)
varnames <- c("Date", "Time", "Log_Time", "O2_mgL", "Phase", "Amp", "Temp C",
"Error Message")
results <- data.frame()
for (i in 1:length(files)) {
fname <- paste(wd, files[i], sep="/")
data <- read.table(fname, sep=";", skip=58)
colnames(data) <- varnames
data$id <- 1:nrow(data)
fit <- summary(lm(O2_mgL~id, data=data))
results[i,1] <- fit$coefficients[2]
results[i,2] <- fit$r.squared
}
rownames(results) <- sub(".txt", "", files)
colnames(results) <- c("Slope", "R2")
print(results)
答案 1 :(得分:1)
此代码可能有机会。使用attach并不是一个好主意,尤其是在创建函数时。
Coral_1_Dark.txt <- "22/05/11; 16:03:28; 0.000; 6.079; 31.41; 84881; 25.60; E0;
+ 22/05/11; 16:03:29; 0.017; 6.063; 31.44; 84868; 25.60; E0;
+ 22/05/11; 16:03:30; 0.034; 6.079; 31.41; 84868; 25.60; E0;
+ 22/05/11; 16:03:31; 0.051; 6.079; 31.41; 84868; 25.60; E0;
+ 22/05/11; 16:03:32; 0.068; 6.068; 31.43; 84868; 25.60; E0;
+ 22/05/11; 16:03:33; 0.085; 6.068; 31.43; 84881; 25.60; E0;
+ 22/05/11; 16:03:34; 0.102; 6.079; 31.41; 84874; 25.60; E0;
list_of_summaries <- sapply( 'Coral_1_Dark.txt', function(nam) {
O2 <- read.table(file=textConnection(get(nam)), sep=";",header=FALSE)
names(O2) <- c("Date","Time","Log_Time","O2_mgL","Phase",
"Amp","Temp C","Error Message", "junk")
O2$id <- seq_len( nrow(O2) )
fit=lm(O2_mgL~id , data=O2)
summ <- summary(fit)
return( c(slope= coef(fit)["id"], R2= summ[["r.squared"]] ) ) })
as.data.frame( list_of_summaries )
答案 2 :(得分:0)
是的,您即将获得应用功能的介绍。基本上对文件夹执行dir()
调用,然后使用单个文件参数将您在事件中完成的所有内容包装起来。并返回您感兴趣的结果。然后使用函数作为第二个参数调用文件列表上的lapply