根据标记对每行中的每个句子进行评分并总结文本。 (JAVA)

时间:2012-03-14 13:15:04

标签: java stanford-nlp pos-tagger

我正在尝试用Java创建一个摘要生成器。我正在使用Stanford Log-linear Part-Of-Speech Tagger标记单词,然后,对于某些标签,我正在对句子进行评分,最后在摘要中,我正在打印具有高分值的句子。 这是代码:

    MaxentTagger tagger = new MaxentTagger("taggers/bidirectional-distsim-wsj-0-18.tagger");

    BufferedReader reader = new BufferedReader( new FileReader ("C:\\Summarizer\\src\\summarizer\\testing\\testingtext.txt"));
    String line  = null;
    int score = 0;
    StringBuilder stringBuilder = new StringBuilder();
    File tempFile = new File("C:\\Summarizer\\src\\summarizer\\testing\\tempFile.txt");
    Writer writerForTempFile = new BufferedWriter(new FileWriter(tempFile));


    String ls = System.getProperty("line.separator");
    while( ( line = reader.readLine() ) != null )
    {
        stringBuilder.append( line );
        stringBuilder.append( ls );
        String tagged = tagger.tagString(line);
        Pattern pattern = Pattern.compile("[.?!]"); //Find new line
        Matcher matcher = pattern.matcher(tagged);
        while(matcher.find())
        {
            Pattern tagFinder = Pattern.compile("/JJ"); // find adjective tag
            Matcher tagMatcher = tagFinder.matcher(matcher.group());
            while(tagMatcher.find())
            {
                score++; // increase score of sentence for every occurence of adjective tag
            }
            if(score > 1)
                writerForTempFile.write(stringBuilder.toString());
            score = 0;
            stringBuilder.setLength(0);
        }

    }

    reader.close();
    writerForTempFile.close();

以上代码无效。虽然,如果我削减我的工作并为每一行(而不是句子)生成分数,它就有效。但摘要不是那样产生的,不是吗? 这是代码:(所有声明与上面相同)

while( ( line = reader.readLine() ) != null )
        {
            stringBuilder.append( line );
            stringBuilder.append( ls );
            String tagged = tagger.tagString(line);
            Pattern tagFinder = Pattern.compile("/JJ"); // find adjective tag
            Matcher tagMatcher = tagFinder.matcher(tagged);
            while(tagMatcher.find())
            {
                score++;  //increase score of line for every occurence of adjective tag
            }
            if(score > 1)
                writerForTempFile.write(stringBuilder.toString());
            score = 0;
            stringBuilder.setLength(0);
        }

编辑1:

有关MaxentTagger的功能的信息。显示其功能的示例代码:

import java.io.IOException;

import edu.stanford.nlp.tagger.maxent.MaxentTagger;

public class TagText {
    public static void main(String[] args) throws IOException,
            ClassNotFoundException {

        // Initialize the tagger
        MaxentTagger tagger = new MaxentTagger(
                "taggers/bidirectional-distsim-wsj-0-18.tagger");

        // The sample string
        String sample = "This is a sample text";

        // The tagged string
        String tagged = tagger.tagString(sample);

        // Output the result
        System.out.println(tagged);
    }
}

输出:

This/DT is/VBZ a/DT sample/NN sentence/NN

编辑2:

使用BreakIterator修改代码以查找句子中断。然而问题仍然存在。

while( ( line = reader.readLine() ) != null )
        {
            stringBuilder.append( line );
            stringBuilder.append( ls );
            String tagged = tagger.tagString(line);
            BreakIterator bi = BreakIterator.getSentenceInstance();
            bi.setText(tagged);
            int end, start = bi.first();
            while ((end = bi.next()) != BreakIterator.DONE)
            {
                String sentence = tagged.substring(start, end);
                Pattern tagFinder = Pattern.compile("/JJ");
                Matcher tagMatcher = tagFinder.matcher(sentence);
                while(tagMatcher.find())
                {
                    score++;
                }
                scoreTracker.add(score);
                if(score > 1)
                    writerForTempFile.write(stringBuilder.toString());
                score = 0;
                stringBuilder.setLength(0);
                start = end;
            }

2 个答案:

答案 0 :(得分:3)

找到句子中断可能比查找[。?!]更复杂,考虑使用BreakIterator。getSentenceInstance()

它的性能实际上与LingPipe(更复杂)的实现非常相似,并且优于OpenNLP(至少来自我自己的测试)。

示例代码

BreakIterator bi = BreakIterator.getSentenceInstance();
bi.setText(text);
int end, start = bi.first();
while ((end = bi.next()) != BreakIterator.DONE) {
    String sentence = text.substring(start, end);
    start = end;
}

修改

我认为这就是你要找的东西:

    Pattern tagFinder = Pattern.compile("/JJ");
    BufferedReader reader = getMyReader();
    String line = null;
    while ((line = reader.readLine()) != null) {
        BreakIterator bi = BreakIterator.getSentenceInstance();
        bi.setText(line);
        int end, start = bi.first();
        while ((end = bi.next()) != BreakIterator.DONE) {
            String sentence = line.substring(start, end);
            String tagged = tagger.tagString(sentence);
            int score = 0;
            Matcher tag = tagFinder.matcher(tagged);
            while (tag.find())
                score++;
            if (score > 1)
                writerForTempFile.println(sentence);
            start = end;
        }
    }

答案 1 :(得分:2)

如果不理解这一切,我的猜测就是你的代码应该更像这样:

    int lastMatch = 0;// Added

    Pattern pattern = Pattern.compile("[.?!]"); //Find new line
    Matcher matcher = pattern.matcher(tagged);
    while(matcher.find())
    {
        Pattern tagFinder = Pattern.compile("/JJ"); // find adjective tag

        // HERE START OF MY CHANGE
        String sentence = tagged.substring(lastMatch, matcher.end());
        lastMatch = matcher.end();
        Matcher tagMatcher = tagFinder.matcher(sentence);
        // HERE END OF MY CHANGE

        while(tagMatcher.find())
        {
            score++; // increase score of sentence for every occurence of adjective tag
        }
        if(score > 1)
            writerForTempFile.write(sentence);
        score = 0;
    }