我使用BISON和FlEX为C语言编写了一个解析器。如果给定的c-输入代码语法错误,它在终端中工作并打印“语法错误”,否则不打印。
但我想打印与给定c输入代码相关的解析器树作为我的解析器的输出。我怎么做? BISON中是否有可用于打印解析器树的函数?
答案 0 :(得分:1)
TXR语言(http://www.nongnu.org/txr)使用Flex和Yacc来解析其输入。如果您为其提供-v
选项,则可以看到解析树。
E.g:
$ ./txr -v -c "@/[a-z]*|foo/"
spec:
(((text (#<sys:regex: 9d99268> or (0+ (set (#\a . #\z))) (compound #\f #\o #\o)))))
您可以在解析器操作中构建树,并使用树形打印例程自行打印。我使用类似Lisp的对象表示来使生活更轻松。
写出来的是由递归打印函数处理,该函数识别所有可能的对象类型并将它们呈现为符号。例如,您可以看到使用散列反斜杠表示法打印的字符类型对象,并使用符号#< ... >
打印不可打印,不透明,已编译的正则表达式。
这是语法的一部分:
regexpr : regbranch { $$ = if3(cdr($1),
cons(compound_s, $1),
car($1)); }
| regexpr '|' regexpr { $$ = list(or_s, $1, $3, nao); }
| regexpr '&' regexpr { $$ = list(and_s, $1, $3, nao); }
| '~' regexpr { $$ = list(compl_s, $2, nao); }
| /* empty */ %prec LOW { $$ = nil; }
;
如您所见,构建AST主要是嵌套列表的简单构造。 这种形式编译非常方便。基于NFA的正则表达式编译器的顶级功能非常易读:
/*
* Input is the items from a regex form,
* not including the regex symbol.
* I.e. (rest '(regex ...)) not '(regex ...).
*/
static nfa_t nfa_compile_regex(val exp)
{
if (nullp(exp)) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(acc, 0);
return nfa_make(s, acc);
} else if (typeof(exp) == chr_s) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_single(acc, c_chr(exp));
return nfa_make(s, acc);
} else if (exp == wild_s) {
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_wild(acc);
return nfa_make(s, acc);
} else {
val sym = first(exp), args = rest(exp);
if (sym == set_s) {
return nfa_compile_set(args, nil);
} else if (sym == cset_s) {
return nfa_compile_set(args, t);
} else if (sym == compound_s) {
return nfa_compile_list(args);
} else if (sym == zeroplus_s) {
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *acc = nfa_state_accept();
/* New start state has empty transitions going through
the inner NFA, or skipping it right to the new acceptance state. */
nfa_state_t *s = nfa_state_empty(nfa_arg.start, acc);
/* Convert acceptance state of inner NFA to one which has
an empty transition back to the start state, and
an empty transition to the new acceptance state. */
nfa_state_empty_convert(nfa_arg.accept, nfa_arg.start, acc);
return nfa_make(s, acc);
} else if (sym == oneplus_s) {
/* One-plus case differs from zero-plus in that the new start state
does not have an empty transition to the acceptance state.
So the inner NFA must be traversed once. */
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *acc = nfa_state_accept();
nfa_state_t *s = nfa_state_empty(nfa_arg.start, 0); /* <-- diff */
nfa_state_empty_convert(nfa_arg.accept, nfa_arg.start, acc);
return nfa_make(s, acc);
} else if (sym == optional_s) {
/* In this case, we can keep the acceptance state of the inner
NFA as the acceptance state of the new NFA. We simply add
a new start state which can short-circuit to it via an empty
transition. */
nfa_t nfa_arg = nfa_compile_regex(first(args));
nfa_state_t *s = nfa_state_empty(nfa_arg.start, nfa_arg.accept);
return nfa_make(s, nfa_arg.accept);
} else if (sym == or_s) {
/* Simple: make a new start and acceptance state, which form
the ends of a spindle that goes through two branches. */
nfa_t nfa_first = nfa_compile_regex(first(args));
nfa_t nfa_second = nfa_compile_regex(second(args));
nfa_state_t *acc = nfa_state_accept();
/* New state s has empty transitions into each inner NFA. */
nfa_state_t *s = nfa_state_empty(nfa_first.start, nfa_second.start);
/* Acceptance state of each inner NFA converted to empty
transition to new combined acceptance state. */
nfa_state_empty_convert(nfa_first.accept, acc, 0);
nfa_state_empty_convert(nfa_second.accept, acc, 0);
return nfa_make(s, acc);
} else {
internal_error("bad operator in regex");
}
}
}