并行与串行实现说明

时间:2012-03-12 18:52:22

标签: java concurrency parallel-processing numerical-methods

我已经实现了使用jacobi方法求解线性系统的串行和并行算法。两种实现都会收敛并提供正确的解决方案。

我无法理解:

  1. 与串行相比,如此少的迭代次数后,并行实现如何收敛(两者中使用相同的方法)。我是否面临一些我不知道的并发问题?
  2. 在并行实现(6,7)中,迭代次数如何因运行而异?
  3. 谢谢!

    节目输出:

    Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}
    Serial: iterations=7194 , error=false, solution=[-1.1270591, 4.7042074, -1.8922218, 1.5626835]
    Parallel: iterations=6 , error=false, solution=[-1.1274619, 4.7035804, -1.8927546, 1.5621948]
    

    代码:

    主要

    import java.util.Arrays;
    
    public class Main {
    
        public static void main(String[] args) {
    
            Serial s = new Serial();
            Parallel p = new Parallel(2);
    
            s.solve();
            p.solve();
    
            System.out.println("Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}");
            System.out.println(String.format("Serial: iterations=%d , error=%s, solution=%s", s.iter, s.errorFlag, Arrays.toString(s.data.solution)));
            System.out.println(String.format("Parallel: iterations=%d , error=%s, solution=%s", p.iter, p.errorFlag, Arrays.toString(p.data.solution)));
    
    
        }
    
    }
    

    数据

    public class Data {
    
        public float A[][] = {{2.886139567217389f, 0.9778259187352214f, 0.9432146432722157f, 0.9622157488990459f}
                            ,{0.3023479007910952f,0.7503803506938734f,0.06163831478699766f,0.3856445043958068f}
                            ,{0.4298384105199724f,  0.7787439716945019f,    1.838686110345417f, 0.6282668788698587f}
                            ,{0.27798718418255075f, 0.09021764079496353f,   0.8765867330141233f,    1.246036349549629f}};
    
        public float b[] = {1.0630309381779384f,3.674438173599066f,0.6796639099285651f,0.39831385324794155f};
        public int size = A.length;
        public float x[] = new float[size];
        public float solution[] = new float[size];
    
    
    }
    

    并行

    import java.util.Arrays;
    
        public class Parallel {
    
    
            private final int workers;
            private float[] globalNorm;
    
            public int iter;
            public int maxIter = 1000000;
            public double epsilon = 1.0e-3;
            public boolean errorFlag = false;
    
            public Data data = new Data();
    
            public Parallel(int workers) {
                this.workers = workers;
                this.globalNorm = new float[workers];
                Arrays.fill(globalNorm, 0);
            }
    
            public void solve() {
    
                JacobiWorker[] threads = new JacobiWorker[workers];
                int batchSize = data.size / workers;
    
                float norm;
    
                do {
    
    
                    for(int i=0;i<workers;i++) {
                        threads[i] = new JacobiWorker(i,batchSize);
                        threads[i].start();
                    }
    
                    for(int i=0;i<workers;i++)
                        try {
    
                            threads[i].join();
    
                        } catch (InterruptedException e) {
    
                            e.printStackTrace();
                        }
    
                    // At this point all worker calculations are done!
    
                    norm = 0;
    
                    for (float d : globalNorm) if (d > norm) norm = d;
    
                    if (norm < epsilon)
                        errorFlag = false; // Converged
                    else
                        errorFlag = true; // No desired convergence
    
                } while (norm >= epsilon && ++iter <= maxIter);
    
            }
    
            class JacobiWorker extends Thread {
    
                private final int idx;
                private final int batchSize;
    
                JacobiWorker(int idx, int batchSize) {
                    this.idx = idx;
                    this.batchSize = batchSize;
                }
    
                @Override
                public void run() {
    
                    int upper = idx == workers - 1 ? data.size : (idx + 1) * batchSize;
    
                    float localNorm = 0, diff = 0;
    
                    for (int j = idx * batchSize; j < upper; j++) { // For every
                                                                    // equation in batch
    
                        float s = 0;
                        for (int i = 0; i < data.size; i++) { // For every variable in
                                                                // equation
    
                            if (i != j)
                                s += data.A[j][i] * data.x[i];
    
                            data.solution[j] = (data.b[j] - s) / data.A[j][j];
    
                        }
    
    
                        diff = Math.abs(data.solution[j] - data.x[j]);
                        if (diff > localNorm) localNorm = diff;
                        data.x[j] = data.solution[j];
    
    
                    }
    
    
                    globalNorm[idx] = localNorm;
    
                }
    
            }
    
        }
    

    串行

    public class Serial {
    
        public int iter;
        public int maxIter = 1000000;
        public double epsilon = 1.0e-3;
        public boolean errorFlag = false;
    
        public Data data = new Data();
    
        public void solve() {
    
            float norm,diff=0;
    
            do {
    
    
                for(int i=0;i<data.size;i++) {
    
                    float s=0;  
                    for (int j = 0; j < data.size; j++) {
                        if (i != j)
                            s += data.A[i][j] * data.x[j];
                        data.solution[i] = (data.b[i] - s) / data.A[i][i];
                    }
                }
    
    
                norm = 0;
    
                for (int i=0;i<data.size;i++) {
                    diff = Math.abs(data.solution[i]-data.x[i]); // Calculate convergence
                    if (diff > norm) norm = diff;
                    data.x[i] = data.solution[i];
                }
    
    
                if (norm < epsilon)
                    errorFlag = false; // Converged
                else
                    errorFlag = true; // No desired convergence
    
    
            } while (norm >= epsilon && ++iter <= maxIter);
    
        }
    }
    

1 个答案:

答案 0 :(得分:2)

我认为这是实施而非并行化的问题。看看Parallel p = new Parallel(1);

会发生什么
Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}
Serial: iterations=7194 , error=false, solution=[-1.1270591, 4.7042074, -1.8922218, 1.5626835]
Parallel: iterations=6 , error=false, solution=[-1.1274619, 4.7035804, -1.8927546, 1.5621948]

事实证明 - 你的第二个实现与你的第一个实现完全不同。

我将此添加到您的并行版本中,它以相同的迭代次数运行。

for (int i = idx * batchSize; i < upper; i++) {
    diff = Math.abs(data.solution[i] - data.x[i]); // Calculate
        // convergence
        if (diff > localNorm)
            localNorm = diff;
            data.x[i] = data.solution[i];
        }
}