有没有更好的方法来使用Apache Hive来对我的日志数据进行会话?我不确定我是否会以最佳方式执行此操作:
日志数据存储在序列文件中;单个日志条目是JSON字符串;例如:
{"source": {"api_key": "app_key_1", "user_id": "user0"}, "events": [{"timestamp": 1330988326, "event_type": "high_score", "event_params": {"score": "1123", "level": "9"}}, {"timestamp": 1330987183, "event_type": "some_event_0", "event_params": {"some_param_00": "val", "some_param_01": 100}}, {"timestamp": 1330987775, "event_type": "some_event_1", "event_params": {"some_param_11": 100, "some_param_10": "val"}}]}
格式化,如下所示:
{'source': {'api_key': 'app_key_1', 'user_id': 'user0'},
'events': [{'event_params': {'level': '9', 'score': '1123'},
'event_type': 'high_score',
'timestamp': 1330988326},
{'event_params': {'some_param_00': 'val', 'some_param_01': 100},
'event_type': 'some_event_0',
'timestamp': 1330987183},
{'event_params': {'some_param_10': 'val', 'some_param_11': 100},
'event_type': 'some_event_1',
'timestamp': 1330987775}]
}
'source'包含一些关于'events'中包含的事件来源的信息(user_id和api_key); 'events'包含源生成的事件列表;每个事件都有'event_params','event_type'和'timestamp'(时间戳是GMT中的Unix时间戳)。请注意,单个日志条目和日志条目中的时间戳可能不正常。
请注意,我受限制,以至于我无法更改日志格式,最初无法将数据记录到已分区的单独文件中(尽管我可以在记录数据后使用Hive执行此操作)等。
最后,我想要一个会话表,其中一个会话与app(api_k)和用户相关联,并且具有开始时间和会话长度(或结束时间);会话被分开,对于给定的应用和用户,事件之间会出现30分钟或更长时间的差距。
我的解决方案执行以下操作(Hive脚本和python转换脚本在下面;看起来似乎不会显示SerDe源,但请告诉我它是否有用):
[1]以非规范化格式
将数据加载到log_entry_tmp中[2]将数据分解为log_entry,以便例如上面的单个条目现在有多个条目:
{"source_api_key":"app_key_1","source_user_id":"user0","event_type":"high_score","event_params":{"score":"1123","level":"9"},"event_timestamp":1330988326}
{"source_api_key":"app_key_1","source_user_id":"user0","event_type":"some_event_0","event_params":{"some_param_00":"val","some_param_01":"100"},"event_timestamp":1330987183}
{"source_api_key":"app_key_1","source_user_id":"user0","event_type":"some_event_1","event_params":{"some_param_11":"100","some_param_10":"val"},"event_timestamp":1330987775}
[3]转换并将数据写入session_info_0,其中每个条目包含事件'app_id,user_id和timestamp
[4]转换并将数据写入session_info_1,其中条目按app_id,user_id,event_timestamp排序;每个条目都包含一个session_id; python tranform脚本查找拆分,并将数据分组到会话
[5]转换并将最终会话数据写入session_info_2;会话的应用+用户,开始时间和长度(秒)
[Hive script]
drop table if exists app_info;
create external table app_info ( app_id int, app_name string, api_k string )
location '${WORK}/hive_tables/app_info';
add jar ../build/our-serdes.jar;
-- [1] load the data into log_entry_tmp, in a denormalized format
drop table if exists log_entry_tmp;
create external table log_entry_tmp
row format serde 'com.company.TestLogSerde'
location '${WORK}/hive_tables/test_logs';
drop table if exists log_entry;
create table log_entry (
entry struct<source_api_key:string,
source_user_id:string,
event_type:string,
event_params:map<string,string>,
event_timestamp:bigint>);
-- [2] explode the data into log_entry
insert overwrite table log_entry
select explode (trans0_list) t
from log_entry_tmp;
drop table if exists session_info_0;
create table session_info_0 (
app_id string,
user_id string,
event_timestamp bigint
);
-- [3] transform and write data into session_info_0, where each entry contains events' app_id, user_id, and timestamp
insert overwrite table session_info_0
select ai.app_id, le.entry.source_user_id, le.entry.event_timestamp
from log_entry le
join app_info ai on (le.entry.source_api_key = ai.api_k);
add file ./TestLogTrans.py;
drop table if exists session_info_1;
create table session_info_1 (
session_id string,
app_id string,
user_id string,
event_timestamp bigint,
session_start_datetime string,
session_start_timestamp bigint,
gap_secs int
);
-- [4] tranform and write data into session_info_1, where entries are ordered by app_id, user_id, event_timestamp ; and each entry contains a session_id ; the python tranform script finds the splits, and groups the data into sessions
insert overwrite table session_info_1
select
transform (t.app_id, t.user_id, t.event_timestamp)
using './TestLogTrans.py'
as (session_id, app_id, user_id, event_timestamp, session_start_datetime, session_start_timestamp, gap_secs)
from
(select app_id as app_id, user_id as user_id, event_timestamp as event_timestamp from session_info_0 order by app_id, user_id, event_timestamp ) t;
drop table if exists session_info_2;
create table session_info_2 (
session_id string,
app_id string,
user_id string,
session_start_datetime string,
session_start_timestamp bigint,
len_secs int
);
-- [5] transform and write final session data to session_info_2 ; the sessions' app + user, start time, and length in seconds
insert overwrite table session_info_2
select session_id, app_id, user_id, session_start_datetime, session_start_timestamp, sum(gap_secs)
from session_info_1
group by session_id, app_id, user_id, session_start_datetime, session_start_timestamp;
[TestLogTrans.py]
#!/usr/bin/python
import sys, time
def buildDateTime(ts):
return time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(ts))
curGroup = None
prevGroup = None
curSessionStartTimestamp = None
curSessionStartDatetime = None
prevTimestamp = None
for line in sys.stdin.readlines():
fields = line.split('\t')
if len(fields) != 3:
raise Exception('fields = %s', fields)
app_id = fields[0]
user_id = fields[1]
event_timestamp = int(fields[2].strip())
curGroup = '%s-%s' % (app_id, user_id)
curTimestamp = event_timestamp
if prevGroup == None:
prevGroup = curGroup
curSessionStartTimestamp = curTimestamp
curSessionStartDatetime = buildDateTime(curSessionStartTimestamp)
prevTimestamp = curTimestamp
isNewGroup = (curGroup != prevGroup)
gapSecs = 0 if isNewGroup else (curTimestamp - prevTimestamp)
isSessionSplit = (gapSecs >= 1800)
if isNewGroup or isSessionSplit:
curSessionStartTimestamp = curTimestamp
curSessionStartDatetime = buildDateTime(curSessionStartTimestamp)
session_id = '%s-%s-%d' % (app_id, user_id, curSessionStartTimestamp)
print '%s\t%s\t%s\t%d\t%s\t%d\t%d' % (session_id, app_id, user_id, curTimestamp, curSessionStartDatetime, curSessionStartTimestamp, gapSecs)
prevGroup = curGroup
prevTimestamp = curTimestamp
答案 0 :(得分:2)
我认为你可以轻松地删除第3步,并将你在那里使用的查询作为子查询添加到第4步中的from子句。物理化转换,似乎没有给你任何东西。
否则我认为你想在这里实现的目标,这似乎是一种合理的方法。
可能的步骤2您可以使用自定义映射器,将输出作为自定义缩减器传递到步骤4(步骤3作为子查询内置)。这会将mapreduce作业减少1,因此可以节省大量时间。