考虑N个整数的零索引数组A.该数组的指数是从0到N-1的整数。取一个指数K. 如果A [J]>,则将索引J称为K的上升者。 A [K]。注意,如果A [K]是数组A中的最大值,则K没有上升。 如果abs(K-J)是最小可能值(即,如果J和K之间的距离最小),则K的上升J被称为K的最接近的上升。 请注意,K最多可以有两个最接近的上升部分:一个较小,一个比K大。
答案 0 :(得分:2)
这是一个C ++解决方案,其复杂性为O(n)。 注意,有两个循环但是每次迭代时元素的数量变为1/2,或者搜索范围上升了x2倍。 例如,第一次迭代需要N次,但第二次迭代已经是N / 2.
vector<long> ascender(vector <long> A)
{
long N = A.size();
vector<long> R(N,0);
vector<long> IndexVector(N,0); //This vector contains the index of elements with R=0
vector<long> RangeVector(N,0); //This vector define the loop range for each element
IndexVector[N-1]=N-1;
unsigned long CompxTest = 0;
for (long counter=0;counter<N;counter++)
{
IndexVector[counter] = counter; // we start that all elements needs to be consider
RangeVector[counter] = 1; // we start by looking only and neighbors
}
long Length = N;
long range;
while (Length>1)
{
long index = 0;
cout<<endl<<Length;
long J;
for (long counter=0;counter<Length;counter++)
{
CompxTest++; // Just to test complexity
J = IndexVector[counter]; // Get the index that need to be consider
range = RangeVector[J];
//cout<<" ("<<A[J]<<","<<J<<")";
if (range > N)
{
cout<<endl<<"Mini assert "<<range<<" N "<<N;
break;
}
if (J<(N-range) && A[J+range] > A[J])
{
R[J] = range;
}
if (J<(N-range) && A[J+range] < A[J] && R[J+range]==0)
{
R[J+range] = range;
}
if (J<(N-range) && A[J] == A[J+range] && R[J+range]==0)
{
R[J+range] = - range;
}
if (R[J]==0) // Didn't find ascender for this element - need to consider in next iteration
{
if (R[J+range]>2) //We can increase the range because the current element is smaller
RangeVector[J] += R[J+range]-2;
if (R[J+range]<-2)
RangeVector[J] += -R[J+range]-2;
RangeVector[J]++;
IndexVector[index] = J;
index++;
}
}
Length = index;
}
for (long counter=0;counter<N;counter++)
{
if (R[counter] < 0)
{
unsigned Value = abs(R[counter]);
if (counter+Value<N && A[counter]<A[counter+Value])
R[counter] = Value;
if (counter > Value && R[counter-Value]==0)
R[counter] = 0;
R[counter] = Value + R[counter-Value];
if (counter > Value && Value < R[counter - Value])
{
long PossibleSolution = R[counter - Value] + Value;
if (PossibleSolution <N && A[PossibleSolution]>A[counter])
R[counter] = abs(counter - PossibleSolution);
}
}
}
cout<<endl<<"Complex "<<CompxTest;
return R;
}
答案 1 :(得分:1)
//
// C++ using multimap. -- INCOMPLETE
// The multimap MM is effectively the "inverse" of the input array AA
// since it is ordered by pair(value, index), where index refers to the index in
// input array AA, and value is the value in AA at that index.
// Input AA is of course ordered as (index, value).
// So when we read out of MM in value order, (a sorted set of values), each value
// is mapped to the index in the original array AA.
//
int ascender(int AA[], int N, int RR[]) {
multimap<int, int> MM;
// simply place the AA array into the multimap
int i;
for (i = 0; i < N; i++) {
int value = AA[i];
int index = i;
MM.insert(make_pair(value, index));
}
// simply read the multimap in order,
// and set output RR as the distance from one value's
// original index to the next value's original index.
//
// THIS code is incomplete, since it is wrong for duplicate values.
//
multimap<int, int>::iterator pos;
for (pos = MM.begin(); pos != MM.end(); ++pos) {
int value = pos->first;
int index = pos->second;
++pos;//temporarily move ahead to next item
// NEED to FURTHER CONSIDER repeat values in setting RR
RR[index] = (pos)->second - index;
--pos;
}
return 1;
}
答案 2 :(得分:0)
1. Sort the array (if not pre-sorted)
2. Subtract every element with its adjacent element and store result in another
array.
Example: 1 3 5 6 8 -----> (after subtraction) 2 2 1 2
3. Find the minimal element in the new array.
4. Device a logic which would relate the minimal element in the new array to the
two elements in the original one.
答案 3 :(得分:0)
public class Solution {
final static int MAX_INTEGER = 2147483647;
public static int maximal(int[] A) {
int max = A[0];
int length = A.length;
for (int i = 1; i < length; i++) {
if (A[i] > max) {
max = A[i];
}
}
return max;
}
public static int ascender(int[] a,int length, int k) {
int smallest = MAX_INTEGER;
int index = 0;
if (k<0 || k>length-1) {
return -1;
}
for (int i = 0; i < length; i++) {
// Index J is called an ascender of K if A[J] > A[K].
if(a[i] > a[k]) {
int abs = Math.abs(i-k);
if ( abs < smallest) {
smallest = abs;
index = i;
}
}
}
return index;
}
public static int[] array_closest_ascenders(int[] A) {
int length = A.length;
int[] R = new int[length];
for (int K = 0; K < length; K++) {
// Note that if A[K] is a maximal value in the array A,
// then K has no ascenders.
// if K has no ascenders then R[K] = 0.
if (A[K] == maximal(A)) {
R[K] = 0;
break;
}
// if K has the closest ascender J, then R[K] = abs(K-J);
// that is, R[K] is equal to the distance between J and K
int J = ascender(A, A.length, K);
if (J != -1) {
R[K] = Math.abs(K - J);
}
}
return R;
}
public static void main(String[] args) {
int[] a = { 4, 3, 1, 4, -1, 2, 1, 5, 7 };
/* int[] a = {-589630174, 806785750, -495838474, -648898313,
149290786, -798171892, 584782920, -288181260, -252589640,
133741336, -174886978, -897913872 }; */
int[] R = array_closest_ascenders(a);
for (int element : R) {
System.out.print(element + " ");
}
}
}
答案 4 :(得分:0)
关于代码的一些注意事项。我想break
方法中的array_closest_ascenders
应该被continue
替换,以便分析所有元素的上升程度。
当然,maximal(A)
必须被移出一个循环;而是在进入循环之前为某个变量分配最大值并在循环中使用它,从而避免冗余计算最大值。
答案 5 :(得分:0)
这是C#解决方案
class Program
{
static void Main(string[] args)
{
int[] A = new int[] { 4, 3, 1, 4, -1, 2, 1, 5, 7 };
int[] B = new int[A.Length];
int[] R = new int[A.Length];
Program obj = new Program();
obj.ABC(A,B, R);
}
public void ABC(int[] A,int[]B, int[] R)
{
int i, j, m,k;
// int temp = 0;
int n = A.Length - 1;
for (i = 0; i < n; i++)
{
for (j = 0; j <= n; j++)
{
if (A[i] < A[j])
{
m = Math.Abs(j - i);
R[i] = m;
break;
}
}
for (j = i-1; j > 0; j--)
{
if (A[i] < A[j])
{
k = Math.Abs(j - i);
B[i] = k;
break;
}
}
}
for (i = 0; i < n; i++)
{
if (R[i] > B[i] && (B[i] == 0))
{
R[i] = R[i];
//Console.WriteLine(R[i]);
//Console.ReadLine();
}
else { R[i] = B[i]; }
}
}
}
答案 6 :(得分:0)
基本上在搜索功能中,我将数组的第一个元素与右边的元素进行比较,如果它更大,这意味着它是第一个最接近的上升元素。对于其他元素,我比较左边的一个元素,然后紧接着右边的元素。第一个更大的是最接近的上升,我继续这样迭代,直到我找不到比我正在考虑的元素大或我返回0的元素。
class ArrayClosestAscendent {
public int[] solution(int[] A) {
int i;
int r[] = new int[A.length];
for(i=0;i<A.length;i++){
r[i] = search(A, i);
}
return r;
}
public int search(int[] A, int i) {
int j,k;
j=i+1;
k=i-1;
int result = 0;
if(j <= A.length-1 && (A[j]>A[i]))
return Math.abs(j-i);
j++;
while(k>=0 || j < A.length){
if(k >= 0 && A[k] > A[i]){
return Math.abs(i-k);
}else if(j < A.length && A[j] > A[i]){
return Math.abs(i-j);
}else{
j++;
k--;
}
}
return result;
}
}